
J4GS High-performance Computing and Simulation (HCS)
Research Laboratory

HCS

Grant Number NOOO14-97-1-0229
to the University of Florida
January - December 1997

Parallel and Distributed Computing Architectures and
Algorithms for Fault-Tolerant Sonar Arrays"

Annual Report #2

Submitted to the:
Office of Naval Research
800 North Quincy Street

Arlington, VA 22217-5660

February 3, 1998

Attention:
Dr. Donald Davison

Dr. Charles Gaumond
ONR 321

Submitted by:
vsr?

Assoc. Prof, of ECE and Dir., HCS Research Lab
Dept. of Electrical and Computer Engineering

University of Florida
PO Box 116200,327 Larsen Hall

Gainesville, FL 32611-6200
Phone: (352)392-5225, e-mail: george@hcs.ufl.edu

"r> ■V

%

Contributing Research Team Members: *
Alan George, Ryan Fogarty, Jesus Garcia, Ken Kim,
Jeff Markwell, Michael Miars, and Shonda Walker

 now mxssMsm K
Approved ta gobSe telecuMg

Dtembuace ünis»a*d ^

in collaboration with Dr. Warren Rosen at Drexel University

Table of Contents
Table of Contents ii
List of Figures v
List of Tables viii
List of Acronyms ix

1. Introduction 1
1.1. Technical Background 1
1.2. Technical Issues 1

1.2.1. Topology, Architecture, and Protocol 2
1.2.2. Algorithm Decomposition, Partitioning, and Mapping 2
1.2.3. Fault Tolerance 3
1.2.4. Simulator Tools 3

1.3. Technical Approach 4
1.4. Summary of Results 4
1.5. Tasks 5

Task 1. Topology, Architecture, and Protocol Development 5
Task 2. Algorithm Development and Modeling 6
Task 3. Simulator Development 6
Task 4. Preliminary Software System Development 6
Task 5. Strawman Node Circuit Design 6
Task 6. Algorithm and Preliminary Software Development for Split-Aperture Beamforming with

Cross-Spectral Correlation 7
Task 7. Hardware Prototype Development 7
Task 8. Detailed Software System Development 7

2. Integrated Simulation Environment 8
2.1. Foundation Components 8
2.2. Structure of Environment 9

2.2.1. Parallel Process Code 10
2.2.2. MPI runtime system 12
2.2.3. ISE Version 1.3 Extensions 13

2.2.3.1. Multiple Iterations 13
2.2.3.2. Runtime System 14
2.2.3.3. Trigger Network 15

2.3. 'C54 Simulator 15
2.4. High-fidelity Network Models 15

2.4.1. Slotted Ring 16
2.4.2. Test Applications 18
2.4.3. Ratchet Network 22

2.5. DPSA Architecture and Algorithm Performance Predictions 24
2.6. Conclusions 27

3. Parallel Conventional Beamforming 28
3.1. Sequential Conventional Beamforming 28
3.2. Parallel Conventional Beamforming Algorithms 29

3.2.1. Coarse-grained Parallel Algorithms 30
3.2.1.1. Coarse-grained Unidirectional Algorithms 31
3.2.1.2. Coarse-grained FCBDN Algorithms 32

3.2.2. Medium-grained Parallel Algorithms 34
3.2.2.1. Medium-grained Unidirectional Algorithm 34
3.2.2.2. Medium-grained FCBDN Algorithm 35

3.3. Performance Prediction 39

3.4. Performance Results 46
3.5. Conclusions 50

4. Advanced Beamforming Algorithms 51
4.1. The Split-Aperture Conventional Beamforming Algorithm 51
4.2. Computer Simulation 53

4.2.1. Intermediate Data Products 54
4.3. Performance Analysis 56

4.3.1. SA-CBF vs. CBF 56
4.3.2. Parallel Decompositions of SA-CBF 57

4.4. ABF Description 58
4.5. Conclusions 62

5. Prototype Hardware Architecture 63
5.1. Prototype Hardware Considerations 63
5.2. Prototype Processor and Basic Node Architecture 64

5.2.1. Overview of the Node Processor 64
5.2.2. Functional Overview of the Development Board 66

5.3. Prototype System Configuration 67
5.4. Testing and Simulation Environment 68

5.4.1. In-circuit Emulator and Debugging Tool 70
5.5. Conclusions 71

Conclusions 72

Bibliography 74

Appendix A. Extensions to Integrated Simulation Environment 81
A.l. Integrated Simulation Environment Internals 81

A. 1.1. Communication Structures 81
A. 1.2. Process Structure and Spawning 86
A.l.3. BONeS Interface Structure and Spawning 88
A.1.4. Communication and Relays 89
A.1.5. Portal Internals 92

A.l.5.1. Decomposition of ISE Functions 92
A.l.5.2. Enhancing ISE Performance 95

A.2. User's Guide 97
A.2.1. Minimum Hardware Requirements 97
A.2.2. Minimum Software Requirements 97
A.2.3. Starting the ISE Program 97
A.2.4. Starting the Network Simulation 98
A.2.5. After the Simulation Has Started 99
A.2.6. Tips for Advanced Users 99
A.2.7. Requirements of the MPI program 99

A.3. Implementation Guide 99
A.3.1. Portal 99
A.3.2. Hooking up the Portal 102

A.4. Currently Supported MPI Functions in ISE 104
A.5. Stages of ISE Development 105
A.6. Other SCALE BONeS/MPI Notes 105
A.7. Sample Remote Host File for ISE 106

Appendix B. Extensions to Parallel Conventional Beamforming 107
B.l. Extended Work in Time-Domain Beamforming 107

B.l.l. Non-Linear Algorithmic Enhancements for Time-Domain Beamformers 107
B.l.1.1. Circular Shift Method 108

iii

B. 1.1.2. Cycle Check Procedure for Circular Shifting 111
B.1.1.3. Fractional Beamsteering 113
B.1.1.4. Bresenham's Algorithm for Fractional Beamsteering 115

B.1.2. The Butterfly Beamformer 116
B.l.2.1. The Butterfly Characteristic 116
B.l.2.2. Complexity of the Butterfly Beamformer 118
B.1.2.3. The Delicate Butterfly 119
B.1.2.4. A Global Data Scope Time-Domain Beamform Algorithm (GDS-TDBA) 119
B.l.2.5. The GDS-TDBA Algorithm 120
B.1.2.6. GDS-TDBA Memory Matrix Solution 121
B.1.2.7. GDS-TDBA Parallelism 122
B.1.2.8. GDS-TDBA Source Code 124

B.2. Extended Work In FFT Conventional Beamforming 124
B.2.1. Pipelined Medium-Grain Full-Capability Algorithm 125
B.2.2. Category Definitions 129
B.2.3. Category Performance Results 131

Appendix C. Extensions to Advanced Beamforming Algorithms 133
C.l. Details of Algorithm Stages 133

C.l.l. Fast Fourier Transform Stage 133
C.l.2. Frequency-Domain Beamforming Stage 133
C.l.3. Cross-correlation Stage 135
C.1.4. Mapping Process Stage 137

C.2. Computer Simulation 139
C.2.1. Parameters Used in the Simulation 139
C.2.2. Generate Input Data 139
C.2.3. Complex Situations 140

Appendix D. Extensions to Prototype Hardware Architecture 144
D.I. Additional Node Processor Features 144
D.2. TDM Serial Port 144

D.2.1. TDM Serial Port Registers 145
D.2.2. TDM Serial Port Operation 146
D.2.3. Receive/Transmit Operations 147

Appendix E. Fault-tolerant Architectures and Algorithms 149
E.l. Fault-Tolerant Services 149
E.2. Data Padding Samples 152
E.3. Automatic Repeat Requests 154
E.4. Reinitialize Request 154
E.5. Ping (Check Status) Request 155
E.6. Beamform Request 156
E.7. Arbitrate New Master 157
E.8. Verification of GDS Fault-Tolerant Kernel 158
E.9. Conclusions 162

IV

List of Figures
Figure 2.1 - ISE Runtime Environment 9
Figure 2.2 - Global Data Scope (GDS) versus Local Data Scope (LDS) Systems 16
Figure 2.3 - Input Switch 17
Figure 2.4 - Slot Usage 18
Figure 2.5 - Fill Empty Slot 18
Figure 2.6 - Throughput versus Slot Sizes 20
Figure 2.7 - Throughput of 8 Node Cluster versus Number of Slots 21
Figure 2.8 - 100-Barriers Test 21
Figure 2.9 - Ratchet Network Protocol 22
Figure 2.10 - Execution Time for Non-pipelined Program over Different Network and Processor Speeds 25
Figure 2.11 - Execution Time for Pipelined Program over Different Network and Processor Speeds 25
Figure 3.1 - Flowchart for Sequential FFT Beamformer 29
Figure 3.2 - Flowchart for CPUNF, Coarse-grained Unidirectional Network Independ. FFT Beamformer. 31
Figure 3.3 - Flowchart for the CPNF, Coarse-grained Network Independent FFT Beamformer 33
Figure 3.4 - Flowchart for the MPUF, Medium-grain Unidirectional FFT Beamformer 35
Figure 3.5 - Flowchart for MPRF, Medium-grain Full-capability FFT Beamformer with Rudimentary Ring

Simulation 36
Figure 3.6 - Ring Communication for MPRF, Medium-grain Full-capability FFT Beamformer 37
Figure 3.7 - Flowchart for MPBF, Medium-grain Full-capability FFT Beamformer with Rudimentary

Bidirectional Array Simulation 38
Figure 3.8 - Bidirectional Array Communication for MPBF, Medium-grain Full-capability FFT

Beamformer 39
Figure 3.9 - Floating-point Operations per Iteration for Parallel Beamformers 42
Figure 3.10 - Floating-Point Communications per Iteration for Parallel Beamformers 44
Figure 3.11 - Expected Execution Times 45
Figure 3.12 - Predicted Execution Times versus Number of Steering Directions and Number of Nodes.... 46
Figure 3.13 - Speedups versus Number of Nodes 47
Figure 3.14 - Efficiencies of Programs versus Number of Nodes 48
Figure 3.15 - Speedups versus Number of Steering Directions 49
Figure 3.16 - Efficiencies versus Number of Steering Directions 49
Figure 4.1 - Block Diagram for the Split-Aperture Conventional Beamforming Algorithm 52
Figure 4.2-Flowchart of the SA-CBF 54
Figure 4.3 - Steered to the data incoming angle (47.8°); (a) subarrayl beamforming output; (b) subarray2

beamforming output; and (c) cross-correlation without SCOT and normalization 55
Figure 4.4 - Steered to the -90° (data angle is 47.8°): (a) subarrayl beamforming output; (b) subarray2

beamforming output; and (c) cross-correlation without SCOT and normalization 55
Figure 4.5 - Effect of SCOT and Normalization: (a) Figure 4.4c redone with normalization and (b) Figure

4.4c redone with SCOT and normalization 56
Figure 4.6 - SA-CBF output with 15 sub-array steering angles and 57 output angles: (a) with linear

interpolation and (b) with T-interpolation 56
Figure 4.7 - Decompositions of the SA-CBF Algorithm 58
Figure 4.8 - Beam pattern of the SA-CBF with a uniform shading (no window applied) 59
Figure 4.9 - Diagram for the ABF weight with frequency averaging 60
Figure4.10-Flowchart for SA-ABF 61
Figure 5.1 - A functional diagram of the TI TMS320C54x Architecture illustrating multiple functional units

[TMS97A] 65
Figure 5.2-A Board Diagram of DSKplus detailing the components on the board [TMS96] 67
Figure 5.3 - Prototype System Configuration 68
Figure 5.4 - DSP Software Development Steps [TMS97C] 70
Figure A.l - Structure of the ISE Bridge File 82
Figure A.2 - Structure of the ISE Share File 83
Figure A.3 - Structure of the ISE BONeS File 85
Figure A.4 - The BONeS_MPI Portal 93

Figure A.5 - Create DPSA Data Packet Function. This function creates the data structure for the
BONeS_MPI Data Packet 94

Figure A.6- Close-up of Receiver Matching Logic 95
Figure A.7 - Close-up of the Six-Node Bidirectional Array's Global Clock Gate 96
Figure A.8 - Master Clock with the ClockRouter Gate 97
Figure A.9 - BONeS/MPI Portal over Two Network Protocol Stacks 100
Figure A.10-Portal Input Queue 101
Figure A.l 1 - System View for an ISE-Capable Network 102
Figure A.12 - Internals of the Two Versions of the Portal 103
Figure A.13-Portal Data Structures 104
Figure A.14 - Sample .rhost File 106
Figure B.l - Beamformer Response versus Azimuth 109
Figure B.2 - Typical Incoming Signals 109
Figure B.3 - Incoming Signal and "Check_Cycle" Output 110
Figure B.4 - Circular Shift Method Results 111
Figure B.5 - Experiments with the "check_cycle" routine 113
Figure B.6 - Fractional Steering 114
Figure B.7 - Fraction Steering and Fractional Steering with Circular Shift Results 115
Figure B.8 - Interpolated Line of Bresenham's Algorithm [JOY97] 116
Figure B.9 - Butterfly Detailed Flowchart 117
Figure B.10-Butterfly High-Level Flowchart 118
Figure B.l 1 - Requestor/Server Paradigm 120
Figure B.12 - Beamform Reduction Process 123
Figure B.13 - Beam Steering and the Reduction Operation 123
Figure B.14 - Original Medium-grain Full-capability Network-independ. FFT Beamformer Flowchart... 126
Figure B.15 - Pipelined Medium-grain Full-capability Network-independ. FFT Beamformer Flowchart. 126
Figure B.16 - Execution Times for Pipelined Medium-grain, Non-pipelined Medium-grain, and Coarse-

grain Programs with 91 Steering Directions 127
Figure B.l7 - Execution Times for Pipelined Medium-grain, Non-pipelined Medium-grain, and Coarse-

grain Programs with 181 Steering Directions 127
Figure B.l8 - Speedups for Pipelined Medium-grain, Non-pipelined Medium-grain, and Coarse-grain

Programs with 91 Steering Directions 128
Figure B.l9 - Speedups for Pipelined Medium-grain, Non-pipelined Medium-grain, and Coarse-grain

Programs with 181 Steering Directions 128
Figure B.20 - Sequential Flowchart for the Frequency-domain Delay-and-Sum Beamformer 130
Figure B.21 - Execution Times for Sequential and Parallel Programs with 8 Nodes and 91 Steering

Directions 131
Figure B.22 - Execution Times for Sequential and Parallel Programs with 8 Nodes and 181 Steering

Directions 131
Figure C.l - Geometry of the sub-array elements 134
Figure C.2 - Geometry of the whole array with 10 nodes 135
Figure C.3 - Illustration of the Cross-correlation Correctness 136
Figure C.4 - Weight Functions for Composite Beam Correlation 137
Figure C.5 - Representation of Beamformer Angles, Steered Angles, and Interpolated Angles 137
Figure C.6 - Demonstration of the frequency and time domain relation 140
Figure C.7 - Generated Input Data without Noise from 47.8 degrees 140
Figure C.8 - SA-CBF Output for Multiple Sources 141
Figure C.9 - Input Signals with Noise and SA-CBF Outputs 142
Figure D.l - TDM Serial Port Register Bits 146
Figure D.2 - TDM Serial Port Wiring Diagram 146
Figure D.3 - TDM Register Contents 147
Figure D.4 - TDM Communication Scenario 148
Figure E.l - System Diagram and Fault-Tolerant Services 150
Figure E.2 - The Beamform Reduction Process 151
Figure E.3 - Data Padding 153
Figure E.4 - Padding Data Streams 154

vi

Figure E.5 - Reinitialize Request 155
Figure E.6 - The Ping Request 156
Figure E.7 - The Beamform Request 157
Figure E.8 - Master Arbitration 158
Figure E.9 - Efficiency Test 162

Vll

List of Tables
Table 2.1 - Proposed Packet Format 23
Table 3.1 - Summary of Algorithm Acronyms and Properties 30
Table 3.2 - Computational Building Blocks Used in Prediction Models 40
Table 3.3 - Parallel Decomposition Equations 41
Table 3.4 - Communication Functions 43
Table 3.5 - Communication Cost Equations 43
Table D.l - TDM Serial Port Registers 145

Vlll

List of Acronyms
Acronym Meaning

ABF
ACC
ADC
AGC
ASCII
ASIC
ATM

BDE
BDN
BDS
BF
BONeS

Adaptive Beamforming
Auto- and Cross-Correlation Beamforming
Analog-to-Digital Converter
Automatic Gain Control
American Standard Code for Information Interchange
Application-Specific Integrated Circuit
Asynchronous Transfer Mode

Block Diagram Editor (in BONeS)
Bounded-Degree Network
Basic Delay-and-Sum Beamforming
Beamforming
Block Oriented NEtwork Simulator

CBF Conventional Beamforming
CC-NUMA Cache-Coherent Non-Uniform Memory Access
COMA Cache-Only Memory Access
COTS Commercial-Off-The-Shelf
CSMA/CD Carrier Sense Multiple Access with Collision Detection

D&C Divide And Conquer
DCE Data Communication Equipment
DFT Discrete Fourier Transform
DLC (DLL) Data Link Control (Data Link Layer)
DOA Direction Of Arrival
DPSA Distributed Parallel Sonar Array
DQDB Distributed Queue, Dual Bus
DRAM Dynamic RAM
DSE Data Structure Editor (in BONeS)
DSI Delay-and-Sum with Interpolation
DT2 Decimation in Time by 2
DTE Data Terminating Equipment

EDU Electrical Distribution Unit
FDM Frequency-Division Multiplexing
FFT Fast Fourier Transform
FIFO First In / First Out
FPGA Field Programmable Gate Array
FTP File Transfer Protocol

HCS High-performance Computing and Simulation Research Laboratory
HDLC High-Level Data Link Control

GUI Graphical User Interface
GDS Global Data Scope

ICN Interconnection Network
IEEE Institute of Electrical and Electronic Engineers
I/O Input /Output
IP Internet Protocol
ISO International Standards Organization

IX

LAN
LCC
LPF
LSB

MAC
MAN
MMIC
MPI
MSB
MTTF
MUTEX (mutex)

NOW
NUMA

O/S
OSI

PBF
PBT
PC
PCMCIA
PDC
PLD
PNF
PNT
PRAM
PRF
PRT
PUF
PUT
PVM

RAM
RDSA
RISC

SA-CBF
SBF
SBT
SCI
SEQFFT
SM
SMP
SRF
SRT
SNT
SNF
SPGA
SRAM
SUF
SUT

Local Area Network
Logical Link Control
Low-Pass Filter
Least Significant Bit

Medium Access Control
Metropolitan Area Network
Microwave Monolithic Integrated Circuit
Message-Passing Interface
Most Significant Bit
Mean Time To Failure
MUTual EXclusion

Network Of Workstations
Non-Uniform Memory Access

Operating System
Open Systems Interconnect

Parallel Bidirectional Frequency-Domain Beamforming
Parallel Bidirectional Time-Domain Beamforming
Phase Center
Personal Computer Memory Card International Association
Parallel and Distributed Computing
Programmable Logic Device
Parallel Network-independent Frequency-Domain Beamforming
Parallel Network-independent Time-Domain Beamforming
Parallel Random Access Machine
Parallel Ring Frequency-Domain Beamforming
Parallel Ring Time-Domain Beamforming
Parallel Unidirectional Frequency-Domain Beamforming
Parallel Unidirectional Time-Domain Beamforming
Parallel Virtual Machine

Random Access Memory
Rapidly Deployable Sonar Array
Reduced Instruction Set Architecture

Split Aperture Convention Beamforming
Sequential Bidirectional Frequency-Domain Beamforming
Sequential Bidirectional Time-Domain Beamforming
Scalable Coherent Interface
Purely SEQuential FFT Beamforming
Simulation Manager (in BONeS)
Symmetric Multiprocessing
Sequential Ring Frequency-Domain Beamforming
Sequential Ring Time-Domain Beamforming
Sequential Network-independent Time-Domain Beamforming
Sequential Network-independent Frequency-Domain Beamforming
System Programmable Gate Array
Static RAM
Sequential Unidirectional Frequency-Domain Beamforming
Sequential Unidirectional Time-Domain Beamforming

TCP Transmission Control Protocol

TDM Time-Division Multiplexing

UMA Uniform Memory Access

VCSEL Vertical Cavity Surface Emitting Laser

WAN Wide Area Network

XI

1. Introduction
Quiet submarine threats and high clutter in the littoral undersea environment demand that

higher-gain acoustic sensors be deployed for undersea surveillance. This trend requires the
implementation of high-element-count sonar arrays and leads to a corresponding increase in data
rate and the associated signal processing. The U.S. Navy is developing a series of low-cost,
disposable, battery-powered, and rapidly-deployable sonar arrays for undersea surveillance. The
algorithms being mapped to these and other sonar arrays are computationally intensive,
particularly when environmentally adaptive for detection and classification. As a result, the
processing and dependability requirements placed on the data collector/processor, the monolithic
embedded computer required to collect and process sensor data in a real-time fashion, are
becoming prohibitive in terms of cost, electrical power, size, weight, etc.

Parallel processing techniques together with advanced networking and distributed computing
technologies and architectures can be used to turn the telemetry nodes of these autonomous sonar
arrays into processing nodes of a large distributed, parallel processing system for sonar signal
processing. This approach holds the potential to eliminate the need for a centralized data
collector/processor, reduce the aggregate battery drain, and increase overall system performance,
dependability, and versatility.

The RDSA (Rapidly Deployable Sonar Array) architecture will be used as a baseline for
purposes of comparison. The target current drain and cost for this array are 22 mA per telemetry
node plus an estimated 2 A for the end processor and a cost of $500 per node plus an estimated
$10K for a ruggedized, packaged end processor.

Products developed under this effort will include algorithms and performance models for the
decomposition and mapping of signal processing applications to linear array or ring
multicomputers for sonar arrays, a software-based fine-grain system simulator, a small-scale
hardware prototype, and a prototype software system capable of running on both the simulator
and the hardware prototype.

1.1. Technical Background

Large autonomous sonar arrays currently under development are designed along a basic
"freight train" architecture. In this architecture the data taken at each node on the network is
loaded onto a train which passes down the "track" to a centralized data collector/processor at the
end of the track. The data collector/processor represents a single-point-of-failure for the network,
a potential performance bottleneck, and is also a major cost driver. For example, a commercial
VME-based special-purpose processor in a ruggedized package costs about $10,000 and draws
about 7 A of current. A future low-power version of this processor might draw as little as 2 A but
this would still require on the order of 180 lithium C-cell batteries for a 30-day mission. The
present program grew out of an attempt to use advanced parallel and distributed processing
techniques and the high bandwidth and low latency of fiber optics to eliminate the centralized
data collector/processor and replace it with a processing architecture in which each telemetry
node of the network represents a processing element of a parallel processor, essentially turning
the array itself into a distributed signal processing machine.

1.2. Technical Issues

The technical issues involved with the design and development of parallel and distributed
computing architectures and algorithms for fault-tolerant sonar arrays include unsolved problems

1

in four major areas. These interrelated areas are: Topology, Architecture, and Protocol;
Algorithm Decomposition, Partitioning, and Mapping; Fault Tolerance; and Simulator Tools.

1.2.1. Topology, Architecture, and Protocol

Given that all technical issues are driven by the network topology and node, processor, and
network protocol design, the development of an efficient and effective architecture and set of
protocols for this network-based multicomputer system for large sonar arrays represents a number
of key technical challenges. Many important multicomputer architecture considerations must be
addressed in terms of speed, cost, weight, power, and reliability for each node. These include the
interconnect architecture, processor architecture, memory architecture, I/O architecture, and the
proper hardware selection of components associated with each of these critical elements.
Architectural components include circuits and devices for sampling, filtering, processing,
communication, flow control, and clock recovery, and their design or selection poses a number of
unresolved problems to balance performance and reliability with power, weight, size, and cost.

Network topology is an issue because it is a major cost driver and impacts both the algorithm
decomposition and the protocol. The network may be linear and unidirectional, linear and
bidirectional, ring-like or a hybrid combination of these. In a bidirectional topology data is
passed in two directions, either over separate fibers or through the same fiber over different
wavelengths. In a ring topology the last node in the array is connected to the first to form a ring-
like structure. The choice of topology is strongly related to the cost and power requirements of
the networking components used, in particular the optical transmitter, receiver, and clock
recovery. A linear unidirectional network requires the smallest number of components but cannot
support many parallel algorithms and does not support a high degree of fault tolerance. A linear
bidirectional network is extremely robust and will support any parallel algorithm but requires
twice the number of optical link components and a more complex protocol. The ring topology
supports all algorithms but requires a long cable run and is the least fault tolerant. Newly
developed plastic fiber represents an economical alternative to glass but has high attenuation, and
therefore will not support a physically large ring. The choice of a topology requires a trade study
of both the component characteristics and protocol and algorithm impact.

Network protocol is another key issue because currently available protocols are prohibitively
power hungry. For example, a typical commercial FDDI chipset draws 400 mA. A custom
protocol must be extremely efficient yet support real-time performance. A number of unresolved
problems must be addressed include message-routing primitives and schemes, network flow
control strategies, deadlock avoidance, and virtual channels. For all these unresolved problems in
topology, architecture, and protocol, success is measured in terms of hardware and protocol
flexibility, versatility, expandability, scalability, cost, weight, power, size, etc. as compared to the
baseline ARDT sonar array.

1.2.2. Algorithm Decomposition, Partitioning, and Mapping

The design and development of novel parallel and distributed algorithms for large sonar array
beamforming applications, and the partitioning and mapping of these algorithms onto candidate
network topologies, architectures, and protocols, is one of the most pivotal technical issues in this
project. This area is not addressed by conventional literature in the field. Rapidly evolving
theoretical and algorithm developments in the area of digital signal processing will be the basis
for program decomposition onto candidate multicomputer architectures for sonar arrays. These
arrays may potentially exhibit multibeam and multifrequency operation, increased acoustic
sensitivity, digital beamforming, and adaptive processing. When designing and developing

multicomputer architectures and protocols, the degree of potential matching between the
architecture and the application algorithm must be analyzed via scalability studies. For different
architecture and algorithm pairs, the analysis may often lead to very different conclusions.
Therefore, another critical technical issue is scalability studies for the determination of the most
optimal combinations of the candidate architectures with the most time-critical algorithms
partitioned in various ways. Key problems in program partitioning and scheduling for
distributed, parallel computers include granularity, latency, grain packing, and scheduling. Some
of the parameters involved in this process include machine size (i.e. the number of nodes), clock
rate or machine cycle, problem size, parallel execution time in terms of problem and machine
size, I/O demand, memory capacity, communication overhead, cost, weight, power, size, etc. A
number of decomposition techniques must be considered, including domain decomposition,
control decomposition, object decomposition, and layer decomposition techniques, and each
involves message-passing programming and performance tuning. Success is measured in terms
of algorithm and software complexity, distributed/parallel performance, architectural correlation,
flexibility, versatility, expandability, scalability, maintainability, etc. as compared to the baseline
sequential sonar array.

1.2.3. Fault Tolerance

Another critical technical issue that must be addressed for this project is the determination of
the most effective and yet efficient architecture and self-healing algorithm design strategies to
improve the reliability and mission time of a large sonar array system. Like parallel and
distributed algorithms for large sonar array applications, conventional literature in fault-tolerant
computing does not address the unique requirements posed for these types of systems. Given the
environment in which these systems will operate, component failure during the desired mission
time is a major concern, repair is not an option, and it is imperative that the loss of individual
processors, memory units, I/O units, interface circuits, and network links does not impede the
ability of the system to perform with graceful degradation. A key element of the fault tolerance
design studies conducted must be how best to improve fault coverage, reliability, and mission
time while keeping low the power, weight, and cost factors. This balance is a critical unresolved
problem for this or any system. Success is measured in terms of system reliability, mission time,
graceful degradation, and the price paid for these in terms of power, weight, size, and cost as
compared to the baseline sequential sonar array.

1.2.4. Simulator Tools

Given the increasingly high costs associated with the development of system prototypes,
especially those based on complex systems designed for distributed and parallel processing,
modeling and simulation techniques and tools have rapidly become a critical enabling technology
and from them has arisen the field of rapid virtual prototyping. Based on Monte Carlo, Markov,
Petri net, and other techniques, such simulation-based prototyping methods hold the promise to
revolutionize the way in which computing systems such as those proposed for large sonar arrays
can be efficiently and effectively designed. However, given the lack of appropriate simulator
tools for the algorithms and architectures associated with this effort, another key technical issue is
the development and exploitation of new simulator tools. For example, while no fine-grain
modeling and simulation tools exist which alone are suitable for sonar array multicomputer
architecture development, protocol development, fault tolerance, and program and algorithm
decomposition and mapping, there are several tools which may be leveraged, adapted, developed,
and integrated via simulator tools developed by this project and the optimum methods for this are
themselves key technical issues in terms of both performance and dependability analysis.

Success is measured in terms of fidelity, flexibility, versatility, expandability, scalability,
transition potential, and the simulator's inherent ability to demonstrate feasibility and assist in
quantifying performance and dependability improvements versus sequential and candidate
baselines.

1.3. Technical Approach

The technical issues will be addressed by a three-phase approach to the design and
development of parallel and distributed architectures and algorithms for fault-tolerant sonar
arrays. Together, these phases will work to demonstrate how advanced techniques in parallel and
distributed processing, computer networks, and fault-tolerant computing can be effectively and
efficiently employed to construct next-generation sonar arrays with less cost and size and a
greater degree of dependability, performance, and versatility.

In the first phase, tasks concentrated on the study, design, and analysis of the fundamental
components for these advanced sonar arrays. An interactive investigation of the interdependent
areas of topology, architecture, protocol, and algorithms has been conducted. The results of this
investigation include the optimum candidate network topology, architecture, hardware
components, and interface protocols for the system architecture and a set of fundamental
decomposition techniques and parallel algorithms for a representative set of time-domain and
frequency-domain beamforming methods.

In the second phase, tasks concentrate on the critical steps to bridge from the results of
fundamental studies in the first phase to the eventual goal of a small hardware prototype.
Development has progressed on the preliminary software system for the advanced sonar array, the
design of a strawman node circuit, and the development of a suite of simulation tools which
support the design and analysis of both system performance and dependability. Parallel programs
are being developed with inherent granularity knobs based on the results of algorithm
decomposition and partitioning in the first phase. Self-healing extensions of the selected
algorithms will be developed and simulated in this phase. A strawman hardware node design is
necessary to determine estimated gate counts and power requirements. Finally and concurrently,
a suite of simulation tools must be augmented and integrated to support the rapid virtual
prototyping of topology, architecture, protocol, and algorithm selections made in the first phase.

In the third phase, the emphasis will be on the development, implementation, and
demonstration of a small, laboratory-based hardware prototype will its own software system
which will be fabricated, used to verify and validate the simulation results, and in so doing
demonstrate and better quantify the inherent advantages of the novel approach employed in its
design. Critical factors in the evaluation of the system will center on quantitative measurements
in the areas of performance and dependability, including computational speed, efficiency, and
precision, reliability, cost, weight, power, size, and mission time, as well as qualitative
measurements related to system flexibility, versatility, expandability, scalability, etc. All of the
measurements will be compared with the baseline ARDT freight train system architecture and
sequential beamforming algorithms to measure the degree of success.

1.4. Summary of Results

In FY96 progress was made in several areas. First, an analysis of the effect of node outage
on network reliability was conducted. This analysis indicated that network reliability could be
greatly enhanced by using an optical bypass switch capable of bypassing at least two successive
failed nodes. A switch of this type is currently being developed under the SBIR program.
Second, a survey of low-cost, low-power networking components was started. So far laser diodes,

4

RAMs, ADCs, and high-power batteries have been investigated and analyses of low-power clock
recovery circuits and plastic fiber optic cable is currently underway. When completed this survey
will be used to determine the optimal network topology and system architecture. Third,
preliminary parallel decompositions of several standard beamforming algorithms have been
performed, including delay-and-sum, delay-and-sum with interpolation, and FFT. Algorithms
and programs for the sequential versions of these beamforming techniques have been developed
in Matlab, C, and MPI to form a baseline by which parallel algorithms and software will be
measured. Fourth, a fine-grain model of the baseline freight train protocol has been developed
using the Block-Oriented Network Simulator (BONeS) tool, and models for candidate network
architectures are under development for unidirectional ring and bidirectional linear array
topologies.

In FY97 further progress has been made in a number of areas. A taxonomy of decomposition
and parallelization methods for conventional beamforming, both time- and frequency-domain, has
been developed. Frequency-domain parallel beamforming algorithms using iteration- and
steering-decomposition methods have been designed, developed, and analyzed. By coding these
parallel algorithms in MPI as part of the preliminary software system, performance experiments
have been conducted on a cluster testbed via several simulated network candidates. Results
indicate near-linear speedup on both ring and bidirectional array networks and this speedup is
critical since it will permit reduction in node and network clock rates, thereby further reducing
power consumption. Time-domain parallel beamforming algorithms using iteration pipelining,
transpose methods, and global data scope extensions are nearing completion, and early
indications are also promising. Fine-grain array network models have been designed, developed,
and verified including unidirectional, bidirectional, token ring, and register-insertion ring
protocols, and a slotted-ring model is near completion. Medium-grain array node models are also
under development and these models will permit parameterization and experimentation with
clock speed, precision, operational versus standby power mode, etc. Integrating these many
developments together, a new modeling and simulation environment for rapid virtual prototyping
of advanced sonar arrays, called the Integrated Array Simulation Environment (IASE), has been
designed and a working version is nearing completion. For the first time, IASE brings together
the fine-grain network models, parallel beamforming software, and the medium-grain node
architecture models in a manner that permits detailed experimentation with candidate algorithms,
network architectures, and node architectures in a dynamic and integrated fashion. The
evaluation of low-power networking and processing components was continued. A design for a
low-power (< 4mA) optical link was developed and evaluated, and a 5 mA prototype using a
commercial laser was fabricated and tested. Analysis of a lower-power version based on
heterojunction bipolar transistor (HBT) technology was started and the development of a low-
power clock recovery circuit was begun. The effects of component failures was also continued
and simple and efficient techniques for sidelobe restoration in the event of node failure were
evaluated.

1.5. Tasks

Task 1. Topology, Architecture, and Protocol Development

An analysis and selection/development of a candidate network topology, architecture, and
interface protocol will be conducted. Hardware will include optical transceiver components,
clock recovery circuits, batteries, protocol ASICs, and node processing elements. Low-power
technologies such as HBTs will also be investigated. A high-level cost and power model will be

developed based on an analysis of fiber run lengths, approximate gate counts, and low-power
optics.

Task 2. Algorithm Development and Modeling

A selection/development, analysis, and decomposition of digital signal processing algorithms
with respect to their suitability in ring or linear-array multicomputer architectures for sonar arrays
will be performed and an analysis and selection of parallel programming tools will be carried out.
Representative algorithms from both time-domain and frequency-domain beamforming will be
modeled and analyzed using analytical and experimental techniques so that tradeoff analyses can
be conducted and the selection of algorithm and architecture features can be made. Modeling and
analysis will be performed with respect to decomposition method and degree of granularity.

Task 3. Simulator Development

The results of the modeling and development process will be used to construct a fine-grain,
high-fidelity simulator suite capable of accurately rendering node, network, and system behavior.
This simulator suite will represent the performance of the basic freight train system as the
baseline as well as the new distributed, fault-tolerant architecture and parallel, self-healing
programs which are the emphasis of this project. The simulator suite will be equipped with a
graphical user interface and will make it possible to gauge the potential performance of candidate
architectures and algorithms and measure relative success and failure to achieve specific goals.
The simulator suite will be expandable to include both low-performance and high-performance
architectures for different mission requirements and will serve as the platform on which the
preliminary decomposition, mapping, and tuning of the prototype software system will be
developed.

Task 4. Preliminary Software System Development

Based on the results of algorithm decomposition and partitioning, a series of preliminary
parallel programs will be constructed with inherent granularity knobs and portability for mapping
to various distributed/parallel architectures. These algorithms and programs will be mapped and
tuned for the linear array and ring topologies under consideration. Parallel programs shall be
extended to include basic self-healing mechanisms. A series of test and evaluation experiments
will be conducted in order to determine the tradeoffs implied by the matching of these parallel
architectures and algorithms.

Task 5. Strawman Node Circuit Design

A strawman functional circuit design will be conducted and a high-level gate count and node
power requirements will be determined based on a COTS and ASIC foundry analysis and power
consumption evaluation. A functional processor/interface circuit will also be designed. The
results of the simulations together with the strawman design will be used to verify that system
performance, fault tolerance, and power requirements are met, and the process will be iterated, if
necessary.

Task 6. Algorithm and Preliminary Software Development for Split-Aperture
Beamforming with Cross-Spectral Correlation

By extending developments in Tasks 1-4, modeling and tradeoff analysis of decomposition
methods and degrees of granularity will be conducted for split-aperture beamforming algorithms
with cross-spectral correlation. New parallel algorithms will be developed and studied via basic
performance models, and preliminary software will be designed for mapping, tuning, and
evaluation.

Task 7. Hardware Prototype Development

An operational small-scale hardware prototype of the network will be constructed that will
support the detailed decomposition, mapping, and tuning of the prototype software system and
verify simulation results.

Task 8. Detailed Software System Development

The preliminary parallel and self-healing programs will be extended to form the development
of a prototype software system for this distributed signal processing machine. These programs
will be mapped to the hardware prototype, tuned for performance and dependability, and a series
of test and evaluation experiments will be conducted to ascertain and demonstrate the superior
capabilities of this hardware and software system as compared to their baselines.

2. Integrated Simulation Environment
The Integrated Simulation Environment (ISE) was begun as a response to the growing need

for a system that simulated (or emulated) a parallel multicomputer from the interconnection
network (ICN) to the actual parallel application. The ISE may be used to model any node
architecture, software protocol, O/S overhead, and fine-grained network. Existing methods to
measure simulated performance do not support data patterns of real-world applications.
Furthermore, existing integrated solutions do not provide the fine-grain detail of stand-alone
nonintegrated network models. ISE resolves these problems by incorporating high-fidelity
models of complex network systems that are capable of supporting real data.

The ISE profits from the ability to build a parallel application, a node architecture, and an
ICN with any desired level of fidelity within a commercial modeling tool. The heart of this
system is an application program interface (API) called BONeS/MPI. BONeS/MPI is a
communication protocol between BONeS and real MPI processes that allows these processes to
offer real-world traffic to the node architecture and network models.

The Integrated Array Simulation Environment (IASE) benefits from such a powerful tool.
The theoretical array is a linearly distributed set of sonar nodes that perform the same MPI
beamforming applications debugged on a laboratory testbed. The IASE is helping to build
efficient real-time parallel beamformers without having to purchase and test actual hardware.
Besides providing a dollar savings, the ISE allows systems to be rapidly prototyped by swapping
integrated models. For instance, a register-insertion ring can be swapped for a slotted ring while
maintaining the same node architecture, processor model, and beamform application. The ISE
has the potential to one day be a tool for rapid virtual prototyping of any system with any desired
fidelity for savings of time and money.

The following subsections will present the parts and processes of the ISE. This presentation
begins with an overview of the suite of programs and structures comprising the ISE. The
remainder of the section describes major components incorporated into ISE: parallel program
interfacing, microprocessor modeling, and network modeling.

2.1. Foundation Components

The Block-Oriented Network Simulator (BONeS), a commercial program created by the Alta
Group, is the discrete-event-driven simulation package used for all networking modeling,
simulation, and analysis in this project. Its main features allow one to build a data structure (Data
Structure Editor), operate on the data structures with hierarchical process blocks (Block Diagram
Editor), execute the block models (Simulation Manager), and build output graphs (Post
Processor). The term event-driven refers to simulations that sequentially execute through a
dynamic list of events, which are simple descriptions of every simulated action. Events are
propagated through the network of structures in time slices. Events do not actually take up time
until they encounter a delay block; therefore, many events can happen in the same time slice, thus
giving the appearance of simultaneous occurrences. The execution of the simulation randomly
traces events that occur in zero time until all events of the slice of time are consumed. The clock
is then incremented, and the next set of events are executed based on a set of scheduling rules.
This process is continued until the entire simulation time is completed. Not all events are
completed in random sequence. Some blocks in BONeS give the user execution controls to
ensure that certain events occur in a determined sequence when within the same time-slice.
BONeS simulations are completely fabricated in C/C++ code from blocks of code called
primitives. BONeS designers can use this capability to their advantage in creating new primitives

and are limited only by C/C++ and the operating system. In fact, the code necessary to run the
ISE has been created in these primitive blocks.

The Message Passing Interface (MPT) is the foundation on which the parallel programs for
the ISE are built. MPI is a standard specification for processes communicating via messages
[MPIF93]. In the message-passing paradigm, each process has an identification number. To send
information to another process, the identification number of the destination process is needed.
Communication between processes cannot occur except by explicitly calling functions to connect
with the other nodes.

The message-passing paradigm fits the sonar array project well due to the fact that each array
node will have its own local memory. Message passing is the preferred method to use when the
multicomputer is loosely coupled. Since the sonar array is comprised of distributed, autonomous
nodes with independent processors and memory, the use of a multicomputer message-passing
software package such as one compliant with the MPI standard is essential to the project.

Of the hundreds of defined calls in MPI, there are a number of basic cornerstones which have
been implemented in the ISE. These calls include standard send, standard receive, broadcast,
barrier, probe, non-blocking probe, and reduction (with various operations), among others.

2.2. Structure of Environment

The ISE environment is comprised of several entities, each serving a specific role in the
communication of data and timing information between the BONeS network and the user parallel
processes. The structure of the environment is shown in Figure 2.1. More detailed explanations
of relevant portions of this structure are presented later in Appendix A.

MPI Processes

BONeS

zfgi
Signal to
BONeS

Signal to
Processes

—I—I—I—
Request

Packet

Data

Signal Type

Relay Socket Relay

reads
local
files

creates
remote
files

Signal to
BONeS

Signal to
Processes

—I—I—I—
Request

Packet

Data

BONeS File

Signal Type

BONeS File

ISE Runtime Environment

Figure 2.1 - ISE Runtime Environment

2.2.1. Parallel Process Code

The parallel programs are written in the standard MPI-C parallel coordination language
[MESS94]. Instead of providing routines to access hardware, the ISE version of MPI interfaces
with shared files. All communication to and from the parallel processes is made through these
shared files, which is accessed by the ISE runtime system. The access is completely invisible to
the MPI programmer.

The user MPI program can include the following basic MPI calls as well as the ISE-specific
MPI_Barrier_time and special non-timed versions of the regular MPI calls. Note that these extra
non-compliant calls are extensions to the standard MPI specification and will not interfere with
program operation. They will, however, be unrecognized in any other MPI implementation.

The standard MPIJSend call allows a user to send a specified amount of information from the
user memory space to a specific remote workstation. The sent message includes a tag value,
which is used to distinguish the message from other messages with the same source and
destination. How the user program utilizes this tag is dependent on the application and is
transparent to the MPI implementation. The MPIJSend call returns control to the user program
once the data has been copied out of the user space. This call may or may not block the user
process for some length of time. If the ISE application layer in the network model has sufficient
buffer space, the call will return immediately. If the application layer is out of buffer space (or
for any other network-specific reason), the MPIJSend call will block until the application layer is
free. Note that in either case, the communication is called "non-blocking" since the call returns
without waiting for the destination node to receive the message.

The complement of the MPIJSend call is MPI_Recv. A process wishing to receive data with
a specific tag from a specific node uses this call to block until that data has arrived and has been
safely copied to the desired point in the user space. The user may specify the "ANY_SOURCE"
wildcard to indicate to the MPI implementation that it should return a message from any
originator as long as the tag matches. The user can also specify the "ANY_TAG" wildcard to
accept all tags. Whenever a wildcard is used to receive, a status variable returned after the call
indicates the tag and source of the message actually passed to the user.

The probe call, MPIJProbe, operates the same way as the MPI_Recv except that the data is
not copied out of the implementation buffers into the user space. Instead, only the status structure
is returned. The non-blocking version of this call, MPI_Iprobe, returns a flag that indicates
whether or not a matching message has been received. Rather than block until the message
arrives, the MPIJprobe can be used to poll the network and return without a match. If a match
was successful, the user program may use the status variable returned from the probe to issue an
MPI_Recv on that message.

In the broadcast call, MPIJBcast, all processes make the same call with the same arguments.
One of the arguments is the source of the data. When the MPIJBcast is called and the source is
equal to the rank of the calling node, the MPI implementation realizes that the source is itself and
does not receive. If the source in the call is not equal to the node rank, the MPI implementation
will receive the broadcast. The sending side of the broadcast may be implemented by a series of
individual sends to all other nodes, or it may take advantage of hardware optimizations for
broadcast by sending to destination node "-1."

The MPIJSarrier call is used to block the processes until all processes have reached the call.
In the ISE, this function is implemented with a single-phase all-to-all transmission. Once each
MPI node has received a token message from all the others, it knows that all the other processes
have reached the barrier, thus the barrier is passed, and the call returns.

10

The reduction operations with MPI_Reduce take as input a vector of some length from all the
nodes. These vectors will arrive at a destination node and be reduced according to some rule.
For example, the rule may be to find the element-by-element sum, maximum, or minimum of all
the nodes' vectors. The MPI_Allreduce function carries out the same operations except that after
the call is finished, all nodes have the vector result instead of just a single destination node.

The last formal MPI function included in the ISE is MPI_Wtime, which returns the current
time. Since the network simulation in BONeS runs independently of the MPI parallel processes,
the MPI_Wtime included in the ISE is the only way for the processes to read "wall clock" time. If
they use the standard "gettimeofday" or other UNIX clock functions, the values returned will be
those for real-world time, which will be incorrect because BONeS is keeping the time in the
simulation.

In addition to these standard MPI calls, the ISE provides a number of additional calls meant
to ease the burden of simulation or to provide additional features. The MPI_Barrier_time call
forces the process to block until some specified absolute simulation time. This functionality is in
contrast to MPI_Barrier which blocks a process until all processes have reached the barrier.
Examples of the use of MPI_Barrier_time include blocking a processes until an analog-to-digital
converter has supposedly placed data into the process memory, as is done between iterations on
the beamforming simulations.

All processes are divided into code blocks, which are defined as all the non-parallel code
located between successive MPI calls. On entrance and exit from any MPI call, the wall clock
time on the system will be noted. The execution time of a code block is determined from
subtracting the entrance time from the exit time of the previous MPI call. The ISE uses these
code block times to know at what simulation time the next request from a process must be
retrieved and serviced. Knowing these times beforehand and reading the request only at these
times allows the ISE to service requests at the appropriate times without having to poll the
processes on every clock cycle to see if they have requests, thus improving the speed and
efficiency of the simulation. The ISE includes a parameter so that the actual code block time on
the workstation can be scaled by a constant factor. This factor allows the user to simulate using
processors that are faster or slower than the processors available for use. For example, if the user
wants to estimate processors running at half the speed of the processor of the host computer, a
factor of 0.5 can be specified.

As a result of using wall clock times, the execution time of a code block will include any time
when the multitasking operating system has swapped the process out; therefore, the execution
time of the code blocks reflects the loading of the workstation used for process simulation. It will
also include time the process spends in system calls such as memory allocation. These results are
major features of hardware-in-the-loop simulation; the hardware provides the simulation with
real-life performance numbers.

All the parallel processes run on the same workstation, and thus are not actually running in
parallel. The processes appear to the network simulation as operating in parallel because each
process keeps the simulation time at which it makes an MPI call independent of the times for the
other processes. By placing all processes on the same workstation, the ISE does not slow down
the simulation time since the BONeS network simulation is considerably slower than the
hardware-in-the-loop code-block execution. Because all processes are on the same workstation
and can be swapped out during code block execution, a mutex (i.e. mutual exclusion device) is
used between the processes. Each process must lock the mutex before timing its code block.
This procedure prevents one process wanting to time a code block from preempting another
process in the middle of timing a code block. The process wanting to time must wait until the
process currently timing is done and releases the mutex. As such, the code block times may only

11

include unwanted preempting from non-ISE processes on the workstation that are not using the
mutex.

The ISE provides a distinction between initializing MPI and MPIJnit. The MPIJnit call in
the ISE begins the simulation; however, it is often desirable to include setup routines in the
processes which use MPI but are not part of the desired simulation. In such a case, the user
initializes the ISE with the MPI_Notime_init call. After this call, the processes carry out the setup
routines. These routines may include MPI calls, but such calls are not simulated through the
BONeS network. After the processes are done setting up the simulation and want to begin, they
call MPIJnit to begin timing. Likewise, at the end of the simulation, the user may call
MPI_Stop_timing to end BONeS's participation, then proceed with some cleanup routines before
calling MPI_Finalize. The strategy of including only relevant code in the BONeS simulation
while allowing setup and cleanup code to be non-timed speeds up the simulation process. To
expand the functionality of the non-timed code, the ISE includes non-timed versions of all MPI
calls. Communication can proceed using these calls outside of the network simulation.

2.2.2. MPI runtime system

The ISE runtime system is in charge of setting up the simulation, managing the shared file
interface, and providing other support for the processes and BONeS. The following paragraphs
describe the actions taken by the system when interfacing an MPI program to BONeS.

First, the runtime system creates the shared files necessary for communication with the
parallel processes. The purpose of the shared files is to provide each process with a specific
location to which it posts requests and outgoing data and from which it receives incoming data.
When making a request or sending data, the process will place the data in the file and post a flag.
The flag will be used to tell the runtime system that there is data in that node's share of the file.
When receiving, the process will wait until a receive flag is posted before accessing the file and
reading the data. Second, the runtime system creates the relay programs on the local host
workstation and on the workstation which will be running BONeS. The purpose of the relay
program on the local (parallel process) workstation is to poll the flags for all the processes. If
there is a request, the relay program sends the data and the originating rank number through a
socket to the remote relay program. At the remote relay, the rank number and data are read from
the socket. The data is placed in the appropriate location for the rank, then the flag for that rank
is posted. At this point, the BONeS node that corresponds to the rank will be able to read the
data. The same procedure occurs in the opposite direction when a BONeS node sends data to a
parallel process.

Next, the runtime system spawns all the parallel processes on the host workstation. To spawn
the processes, the runtime system places a unique rank number in a well-known location in the
shared file and spawns one of the processes, which immediately looks up its node rank in the
shared file to place in a local variable for later identification. Once this is accomplished, the
process posts an inter-process semaphore on which the runtime system has been waiting. The
process then attempts to lock the mutex and time its first code block. After the runtime system
has successfully waited on this semaphore, it overwrites the shared file with the next node rank
number and spawns the same process again. The process will then identify itself as a different
rank and executes accordingly. Once this procedure is complete, all processes will be running
and timing their code blocks.

During execution, each process must notify BONeS of its next scheduled MPI request. The
parallel process adds the execution time of the code block preceding the MPI call to the current
simulation time, which it received from BONeS at the end of its last MPI call. The process then
sends this request type and time to BONeS by writing them to the local shared file and posting the

12

flag. The local relay will discover the flag has been posted and write the data to the remote relay
through the socket. The remote relay will read from the socket, write the request type and time to
the remote shared file in the column for the requesting node, and post the flag for that node's
column. BONeS will then recognize that there is a request from that node. BONeS must always
contain a request for each process so that it knows at what time the process needs a service. To
make sure it always has a request, BONeS blocks on reading a new request after servicing the
previous request (before proceeding through any more simulation time steps). Blocking on
reading a request does not increment the simulation time. This procedure ensures that BONeS
will not get ahead of the processes unless BONeS is servicing a previous request.

After sending the request, the process writes any information BONeS needs to execute the
request to the local shared file. The process then needs a reply, so it will block until the flag in its
column of the local shared file is posted by the local relay, meaning the reply has been written by
the local relay from information it has received through the socket from BONeS. The reply may
include data for a receive request. The reply also contains the time at which the request is
satisfied so that the process can update its simulation time. Once the process gets confirmation of
completion of the request, it repeats the procedure by trying to lock the mutex so that it can time
its next code block and then make its next request.

After reading this description, it is important to note that the above operations are all
implemented within MPI calls. The MPI calls appear to the user to be exactly the same calls as
used in major MPI implementations, thus the interface to the ISE is made completely transparent.
The user need not know how the underlying mechanism is working, only that it executes the
expected way. Because of this transparency, the ISE is a powerful prototyping tool that supports
the portability of software (algorithms) developed by the user.

2.2.3. ISE Version 1.3 Extensions

Several extensions to the ISE were completed in recent weeks. These improvements have no
bearing on the explanation of the ISE operation above. They add considerable flexibility to the
ISE so that the user may more conveniently run simulations.

2.2.3.1. Multiple Iterations

The ISE is designed to exploit BONeS's ability to spawn multiple simulations (also called
iterations) on different machines by specifying multi-valued parameters. Since each single-
iteration simulation runs all of its parallel processes on a single machine (a different machine than
the one on which the BONeS simulation is running), a simulation with x iterations requires x
machines dedicated to the processes and the timing of the code blocks in those processes. Also, x
machines can be used to run the BONeS simulations. In such a configuration, all x iterations can
be completed in approximately the time it takes for a single-iteration simulation (namely, the
single-iteration simulation for which the parameters cause the longest simulation time).

BONeS is completely flexible when assigning machines to iterations insofar as BONeS will
assign an iteration to a machine when available. If a machine is not available or the user has not
specified enough machines for all iterations, BONeS will assign what iterations it can and simply
assign the remaining iterations as the initial iterations complete. Furthermore, BONeS is free to
decide for itself the mapping of iterations to machines. That is, the order of the machines
specified by the user is unrelated to iteration numbers. The ISE supports this flexibility in
BONeS with an appropriately flexible interface between the BONeS machines and the process
machines. The ISE is, however, constrained in that the processes for an iteration must be
matched correctly with the BONeS iteration no matter where BONeS places that iteration. When

13

the BONeS simulation for a particular iteration begins, an initialization routine creates the remote
relay program on whichever machine the BONeS iteration is running. Due to the fact that the
type of machine on which the processes are run (whether it be a SPARCstation-5, SPARCstation-
20, UltraSPARC, etc) is important, the process machines are fixed to iteration numbers at
runtime. A file is created for each iteration (the bridge file), and the name of the local (process)
machine for the iteration is placed in the iteration's file. The file is called the bridge file because
it contains static information about an iteration and can be read across multiple machines without
coherency errors, thus bridging the machines without the need for a dynamic relay as is needed
for the communication shared files. The local relay is then spawned, finds a valid socket port,
and waits for a connection. The remote relay is told to which iteration it belongs by the BONeS
iteration (via a "Get Iteration Number" block in BONeS). The remote relay can then look for the
bridge file for its iteration, find the process machine for its iteration, find the port to use, and
connect to the local relay of the correct iteration. The iteration is then ready to run and proceeds
in the same manner as the single-iteration ISE previously described.

2.2.3.2. Runtime System

A runtime system for starting ISE simulations was created to help in setting up the parameters
and spawning the processes from the different iterations on the appropriate machines. The
system can either read a configuration file and begin the simulation without user intervention or it
can prompt the user for all necessary information. In the latter case, the user is asked how many
iterations to run and how many nodes (which must be the same for all iterations) are to be
simulated. Next, the runtime system steps through each iteration, asking the user for the required
information. First for each iteration, the system asks the user which class of machine the iteration
is to use as its hardware in the loop. Next, the system asks which specific machine in that class is
to be used and displays the processor utilization of that machine. If the machine is heavily loaded
with processes from other users, the ISE user may elect to reject the machine and choose another.
In that case, the next time the user chooses that class of machine, the runtime system lists the
rejected machine as "rejected" so that the user remembers which machines were loaded. Once
the user accepts a machine, the system asks for the command line of the parallel program and the
processor performance-scaling factor (i.e. 0.5 to simulate a machine with half the processing
power of the chosen real-world machine). The system also asks the user whether to record
profiling information so that Upshot, a freeware graphical profile viewing program, can be used
at the end of the simulation to graphically view the communication of the iteration [HERR91].

The system then proceeds to ask the user for the required information for any additional
iterations. However, in later iterations, the process machines which have already been assigned
to iterations are "grayed out" and cannot be chosen. This mechanism ensures that the processes
from different iterations are on different machines and do not interfere with each other's code
block timings. Once all iterations have been configured, the runtime system allows the user to
save the information in a configuration file. This file can then be used straight from the ISE
command line to avoid the above described prompts. The ISE then creates an output window for
each iteration and asks the user to start the BONeS simulation with the given number of iterations
and nodes.

Once the multiple-iteration simulation is complete, each window will prompt the user to
display the graphical profile. If activated, the ISE spawns Upshot, which automatically brings up
the corresponding profiling log file. At this point, the iteration window prompts the user to hit a
key to end. Until the user hits a key, the window remains open so that the user can read the
program output.

14

One last feature of the ISE runtime system is that it checks for currently running simulations
and/or improperly terminated simulations for the user. The reason it must check this condition is
that every ISE execution starts numbering its iterations from zero. When it spawns iteration zero,
any shared files for a currently running simulation or a terminated simulation will impede
creation of the shared files necessary for the new iteration. Therefore, the ISE checks for a lock.
If it detects the lock, it informs the user that the lock is present and that there is either a
simulation running or there had been an improperly terminated simulation. A cleanup routine is
provided so that the user may remove the lock if it is known that the lock is not due to a currently
running simulation.

2.2.3.3. Trigger Network

The MPI function set for the ISE was expanded to allow additional capability to the MPI
programmer when using the ISE. The function MPl_Trigger_network allows the MPI
programmer to specify at a certain point in the program that a trigger should be engaged in the
BONeS model itself. There are three general-purpose triggers (specified by the argument to the
function) available out of the BONeS/MPI Portal block to which the BONeS modeler can
connect. This mechanism gives the user the ability from the parallel program to create a BONeS
event to trigger any BONeS block. Doing so requires knowledge of which trigger number
corresponds to which event; however, the additional capability may be well worth the cost. For
example, the user may wish to run a portion of code, report timing results, trigger a memory
parameter change in BONeS (such as network speed), then run the same code or additional code
over the newly configured BONeS model.

2.3. 'C54 Simulator

To better understand the complex processor architecture of the prototype, an in-house 'C54
simulator was written in C++ (in addition to the proprietary Texas Instruments simulator) and
used to execute the sequential algorithms already written. The in-house simulator reads an
assembled file in S-record format, puts the program in program memory, and executes the
instructions in the same way as would the actual processor. The simulator reports program and
data memory contents, register (including the program counter and stack pointer) and
accumulator contents, and number of clock cycles per program executed. The simulator is still
under development with the goal of becoming a servicing part of the ISE. Several more
instructions will be implemented, and additions such as a model of the TDM serial port on the
'C54 single-board computer are being added. A parallel simulator is being developed where the
simulator will be implemented as an object-oriented class, and several processors will be
instances of this class. The processor classes will communicate with each other through the
simulated TDM port.

The final goal of this ongoing project is to create a BONeS primitive to be used in the ISE in
order to have a more precise software prototyping environment. Such a system would present an
alternative to the hardware-in-the-loop timing of MPI code blocks. Using the in-house 'C54
simulator as a block in BONeS enables us to accurately simulate and debug the behavior of the
complete sonar array before it is actually implemented in hardware.

2.4. High-fidelity Network Models

This section presents the two high-fidelity, fine-grain network models created during the past
year for use as ISE networks and possible DPSA implementation. The first model is for a slotted-

15

ring network. The second is a variation of the slotted ring called the ratchet network, which aims
to provide a more robust network synchronization protocol. These two network models
complement the networks completed in FY96 and described in our first Annual Report.

2.4.1. Slotted Ring

A new programming model, which we are calling a Global Data Scope (GDS) system, has
changed the number of viable networks for the DPSA. GDS is a coarse-grained model that uses a
technique popularized by VMIC (VME Microsystems International Corporation) called reflective
memory. In this type of system, every node has a copy of the memory contents of the other
nodes. These distributed memories allow global data to be accessible to each node. Because of
this, each node does not have to worry about explicitly passing data to other nodes; only
command information must be sent explicitly. Figure 2.2(a) below shows a high-level diagram of
the GDS approach. Notice that in the GDS model only commands are issued from one
beamforming layer to another. The more conventional approach may be called Local Data Scope
(LDS). In an LDS system, the beamforming algorithm must not only issue commands to other
nodes but must pass any data to those nodes which is required of any command. The LDS model
is shown in Figure 2.2(b) below.

The advantages of a GDS system are many including program efficiency, fault-tolerance, and
simple parallel decompositions. These advantages are discussed in further detail in subsequent
sections. However, one of the best advantages is the large use of broadcast sends to the network.
Broadcast sends tend to be very efficient if supported by the hardware.

GDS Model LDS Model

Beamforming
Algorithm

I

I
GDS Layer f

Network Protocol

iCommamP

Data

giCoromandsNs

■ Commänd5B

Beamforming
Algorithm

I
GDS Layer

I
)(Network Protocol

Beamforming
Algorithm

I
Message Passing

Layer

I
Network Protocol

(a)

'■Command^

Data

(b)

Beamforming
Algorithm

Command?

I
Message Passing

Layer

«Command»

I
Network Protocol

Figure 2.2 - Global Data Scope (GDS) versus Local Data Scope (LDS) Systems

The slotted ring was not initially considered to be a viable ring medium access control
(MAC) because of the existence of superior contention schemes such as register insertion.
However, it offers other distinct advantages such as synchronization. However, in the case of
mostly broadcast traffic, it can approach the efficiency of register insertion rings. This protocol
would not be optimal for many beamform applications, but for the Global Data Scope (GDS)
system in particular, it is very well suited. This section discusses the functional aspects of the
slotted ring protocol, verifies and validates the function of the protocol, and lastly compares the

16

performance of the protocol against a register-insertion ring and a register-insertion bidirectional
array.

The slotted ring is not a well-defined protocol. It may be characterized as a reservation
contention scheme and also round robin. Contention is provided by slots that rotate like a train
running in a circle and connected at the extremes. The ring size and ring delays determine the
number of slots, which is the sum of propagation delays and node delays. In other words, the
slots are arranged so that they are continuously flowing through each node, implying that the
architecture will be cut-through to some degree.

The rules are simple: a node may use any empty slot that passes as long as the node does not
already have data on another slot. Once filled, the slot will propagate around the entire ring until
returning to the origin. The node then strips off its data and sends an empty slot. The node may
not reuse this particular slot again but must forward it to the next node and wait for the next
empty slot to arrive. This small detail ensures fairness to all nodes. The contention protocol just
happens to provide two services which are necessary for the DPSA: efficient broadcasting and
tight synchronization. The protocol is obviously efficient at broadcasting since each packet
traverses the entire ring and may be directed to each node's input along the way. Also, fixed-size
slots (or packets) ensure tight, easy-to-implement synchronization.

The slotted ring MAC is based on evaluating and selecting one of three conditions for
incoming packets: store-and-forward, sink-and-create-empty-slot, and forward. These three
conditions completely characterize the movement of any slot through an input switch. The store-
and-forward condition occurs when the packet is addressed for that node. The sink-and-create-
empty-slot condition is the result of a node receiving a packet which originated from that node.
The last case considers the situation in which a node receives a packet that neither is destined for
it nor has originated from it. This simple input switch is shown below as Figure 2.3. It also
allows a broadcast message by using the well-known broadcast address, "-1" (negative one).

fp Local.address

PulIfroaRIng

E3ÜÜ3- t™
"T=P| ™^x^v™*^pg^^$%.

Trigger N»M Slot
 »

E»ptg Slot
 >

Figure 2.3 - Input Switch. The input switch performs checks on three conditions: if the incoming slot is
destined for that node, if the incoming slot originated from that node, and if the slot is empty and may be

fed to the output multiplexer.

The forwarded packet from the input switch then must also be queried before being output to
the network. With certain conditions present, the node may have the opportunity to use this slot
for its next transmission. The variables for this condition are: status of the slot (empty/full),
status of the output queue of the node, and the transmitting status of the node. These conditions
may be shown as a Boolean table such as in Figure 2.4 below. Clearly from this table, three
conditions must be met for a node to use a slot for transmission. The slot must be empty. The
node must have something to send. Lastly, the node must not be transmitting on another slot.
The last condition helps to provide fairness but unfortunately also limits the performance of the
network.

17

Boolean Table - Conditions
for Writing to Passing Slot

Node's Ability to use Forwarded Slot
(condition - not currently transmitting)

Slot Status

Output
Queue
Status

Empty Full

Empty Can't Use Can't Use

Not Empty Can Use Can't Use

Node's Ability to use Forwarded Slot
(condition - currently transmitting)

Slot Status

Output
Queue
Status

Empty Full

Empty Can't Use Can't Use

Not Empty Can't Use Can't Use

Figure 2.4- Slot Usage. Certain conditions must apply before a node may write its data onto a passing
slot. These conditions are broken up into a Boolean table above.

The output decision process is conducted by the Fill Empty Slot module as shown below in
Figure 2.5. The BONeS simulation routes full slots around this slot handler; therefore, it simply
tests the two remaining conditions: whether the node is currently sending and if there is
something in the queue to send.

fPPaokaf Slza

Taat Output Ouaua f"£"
A

Eaptu Quaua
O

Hat Input
>

fit Sending 8tatua

rsMHchgf

LET*

' -PFUII F B-^ r™] rm.
> Insert Scrubber l>
CFull/Eaptu)

.Inssrtt
Packst1

.Insert Bit.
Siz* of l

P«ck»t

5iIfl5&|>B}li"^p|*

>Ona_UauM—
DataOutputsTxCoaplata

Craata OPSn
»Hat Paokat >
(alottad)

T - 8anding
F - Halting

Figure 2.5 - Fill Empty Slot. This module attempts to fill passing slots with data if conditions are right.
However, if the node is currently waiting on another transaction or has an empty output buffer, the slot will

be transmitted empty.

2.4.2. Test Applications

An application layer was created to measure the performance differences between the
register-insertion ring, the register-insertion bidirectional array, and the slotted ring MAC
protocols. This layer requires only three parameters: the message size in bits, the hop count, and
the message rate. The message size is a parameter, which can be set to arbitrary size. This
parameter affects the efficiency of each transaction by adjusting the proportion of actual data bits
to packet overhead. The slotted ring has the additional restriction of slot size that may further
restrict its efficiency. The hop count is a parameter that may be set to any value (even larger than
the number of nodes in the array). The application layer actually uses the hop count number and

18

its rank number to calculate the destination node (via taking the modulus of hop count plus node
number against the number of nodes). For example, node 2 and a hop count of 4 will send to
node 6; whereas, node 6 will send to node 2 in an 8-node array. The message rate is a parameter
that is set in the saturation region causing data to fill the queues to capacity. This setting helps
determine the maximum throughput during overload and also helps to determine the maximum
latency before the saturation point.

The first tests were validation tests of the slotted ring for performance and proper message
routing. A series of ISE tests were quite convenient to verify message routing. The "ping" test
simply sends dummy messages (ping-pongs) between multiple nodes. The ping test is used as a
simple tool to test the functionality of the network. The idea is to ensure that nodes can generate
and respond to messages much like a "ping" request is done on real machines to test if they are
alive. The ping test was successful and each node was able to receive a message from every other
node. Various other tests were performed to check the functionality of the network including its
ability to broadcast messages, barrier synchronize, probe incoming data, and terminate.

The second set of tests for the slotted ring validated the network's performance. Two tests
were performed to gain insight into the slotted ring's characteristics. The first of these tests
injected data at a uniform rate into the system past the saturation point. Multiple iterations were
run changing the slot data size from 32 bits to 256 bits while keeping the size of the data packets
injected into the system fixed at 256 bits. A packetizer block was needed to break up these larger
blocks into the smaller data blocks. Intuitively, breaking a message into packets seems less
efficient than sending the entire block. As is shown in Figure 2.6, this assumption is
approximately correct; however, a seemingly strange phenomenon occurs when approaching the
size of the packet. For instance, when sending 256-bit packages in 224-bit slots, the performance
is poor. This result may be explained by observing that each packet almost fits into the single
slot, but a whole additional slot must be used in order to complete the transaction. Also, note that
this plot shows that the slotted ring is most efficient when it can break a packet into integral
pieces of the whole. Thus, the most efficient slot size for the 256-bit packages is the 256-bit slot,
followed by the 128-bit slot, followed by the 64-bit slot, etc. The worst efficiencies are observed
when sending a slot that is slightly bigger than the packet size. Also, sending very large slots
(compared to packets) is also inefficient. Slotted rings must be specially tuned to the expected
size of network traffic to be efficient. However, since the DPSA has very deterministic traffic
patterns, inefficient cases may be avoided.

19

Scale=10T3

1000.

950.

900.

850.

800.

750.

700.

850.

800.

550.

500.

Slotted Ring Throughput vs Slot Sizes

CO VJ
_ D.

2~
w
CO

CO

O

m^
E

1

Jj
• •

_=
~ •

1

, ,t
50. 100. 1S0. 200.

• ■ i

250
■ J
300.

——H

Number of Bits
'Slot Data S i ze'

QTP Prob»t QTP Prob«3 OTP Prob«E OTP Prob»S

QTP Pr ob«9 QTP Prob*7 OTP Prob»* OTP Prob*6

Figure 2.6 - Throughput versus Slot Sizes. This test shows the response of the throughput while fixing the
size of input data packets to 256 bits and simulating the system over a range of slot sizes. Note that the

network is most efficient when the incoming network packets equal the slot size.

The second test was a performance test versus the number of slots in a fixed eight-node
system. Although the results are as expected, the plots do not reveal the total nature of the
system. The number of slots should never be set to a value larger than the number of nodes for
the contention scheme implemented. Recall that a node could only use a slot if it were not
currently waiting on a previous transaction. If the number of slots is set to a number greater than
the number of nodes, the system is guaranteed to always have a number of empty slots rotating
around the ring wasting bandwidth. If a more complicated contention scheme was used, perhaps
this situation might work, especially if the physical link lengths were large, indicating a large
propagation delay. This test was also performed at saturation, which led to another result. That
is, setting the number of slots equal to the number of nodes appears to be the ideal case (as shown
in Figure 2.7). However, systems are typically not run at the saturation point and instead may
only use a percentage of the total available bandwidth. It seems intuitive, again due to the
contention scheme, that the number of slots should be designed for the average number of nodes
requiring service. This number is somewhat related to the average load by each node. If the
average load for the nodes is 80% of the saturation load, one can deduce that the average number
of nodes requiring service at any moment is 80% of the total number of nodes. Therefore, an
eight-node array might be most efficient with 6 slots if designed to operate 20% below the
saturation point.

20

Slotted Ring Throughput vs. Number of Slots

1200000 - —— —; —

1000000 -
c

_. annnnn -

. *- . * ^—,— —V

T
h

ro
u

g
h

p
u

t
(b

p
s

o

 *

>.

 e

n

 c

3

 O

 O

 C

3

 O

 O

 C

3

 O

 O

 C

3

 O

 O

 C

3

 O

 O

 C

—♦— Seriesl

0 -
1

^^^^^^i^^ypi^S^feiRiß^^BBS^^^BlIäfiii
2 3456789 10 11 12

Number of Slots

Figure 2.7 - Throughput of 8 Node Cluster versus Number of Slots. This test shows that a system with
equal numbers of slots and nodes is most efficient. However, when operating below the saturation region,

this result will be shifted to the left.

A convenient performance test was created to determine how well the slotted ring fares
against the bidirectional array and the register-insertion ring. It fares very well since the test was
optimal for a broadcast network. The test simply performed 100 barrier synchronizations in a
row. The barrier synchronization uses a broadcast mechanism, which is the slotted ring's
strongest quality. Figure 2.8 below shows the BONeS results for each of the simulations (The
unabridged outputs are shown in the appendix. The final Tnow number and the name of the
simulation are shown in bold. The slotted ring and the bidirectional array show similar results,
but the bidirectional array performs better overall. The slotted ring is 7 percent less efficient than
the bidirectional array and is somewhat more efficient than the register-insertion ring. The
register-insertion ring is 11 percent less efficient as the bidirectional array. This test was
composed to simulate the number of broadcast operations in a GDS architecture; therefore, one
can expect performance in the neighborhood of these results.

Current Simulation Time is: 0 015549464151263
Slotted Ring System (8 Nodes)

Current Simulation Time is: 0 014521811157465
DPSA 8 Node Bi-Array

Current Simulation Time is: 0 016361624002457
DPSA RI Ring (8 Nodes)

Figure 2.8- 100-Barriers Test. The 100-Barriers Test was created to compare the slotted-ring protocol to
the bidirectional-array and register-insertion protocols.

21

2.4.3. Ratchet Network

One critical requirement of the final DPSA network is to provide global synchronization to
all of the nodes. This requirement is based on the need to synchronize the analog-to-digital
converters (ADCs). Without this synchronization, the beamform algorithm results would be
incorrect. The physical limitations of the system prevent the use of a physically global clock.
Thus, synchronization must be built into the communication protocol.

One method to create global synchronization is the use of a very deterministic protocol. An
example is a version of the slotted-ring paradigm in which slots are passed around the ring at a
predetermined size. The ratchet network is like a slotted-ring protocol with one exception: it is
not limited by topology. The system may be set up in any number of ways including simple ring,
bidirectional array, counter-rotating rings, etc. The network contains a slot for each node (or two
slots for each node if nodes have two outputs, as do nodes in a bidirectional array or counter-
rotating rings). The protocol involves synchronizing the slots so that they move uniformly from
each node to the next (i.e., this protocol may be visualized as a ratchet, hence the name). This
slot-per-node situation does limit the network in many ways, of which the most obvious is that it
becomes a store-and-forward protocol. This limitation increases system latency in the network;
however, latency may not be a problem if connections are buffered and if the system itself is
latency-independent. Interestingly, the DPSA beamform algorithm itself is largely latency
independent. However, the network must provide tight synchronization to ensure uniform
sampling from the ADCs. Command requests and the use of hardware timers may provide these
pseudo-low-latency messages. The ratchet network is ideal for this system because it may offer
global synchronization or low-latency commands by the use of distributed timers, while at the
same time providing latency-independent movement of data or control messages. The GDS
system, in particular, may benefit from such a network protocol.

Figure 2.9- Ratchet Network Protocol

The system operates in two phases, the first of which is the initialization phase. This phase
synchronizes the network clock on both bit boundaries and word boundaries. Once word-
boundary synchronization is successful, the nodes should all be operating synchronously in
ratchet mode. The system enters this mode by allowing only the master to start sending initially
by sending idle symbols. The idle size equals the entire frame of 60-120 bits, depending on

22

implementation. Once a downstream node receives some idles it begins to send idle symbols
synchronized to the incoming idle frames. This process continues all the way around the ring or
array and looks similar to filling an ice tray with water by filling the highest cube and letting the
water run down to fill the next cube and then the next, etc. Since there will be propagation delays
in the system, the first idles entering the master node in a ring system will not be synced with the
master node's output. To compensate for this delay, the master node divides this delay by the
number of nodes and sends a special control symbol (special idle) to all of the nodes to adjust the
frame output time by the compensation time. After compensation, a propagated self-test symbol
should be completely aligned and should arrive back at the testing node in sync with its own
output symbols (ignoring the compensation factor, which is also added to the master node). A
similar method may be used to synchronize a bidirectional array, but in this case, there are two
master nodes of which one handles the compensation factor. The network "fills" one direction at
a time (one unidirectional link, followed by the other).

Two types of messages may be passed around the network: data and command/control. Data
must be passed in the data field and operate under the usual assumptions for a network protocol.
Command and control, however, may be built into the Ratchet Packet Header. Control messages
may be pseudo-synchronous with the aid of timers. The packet format is modeled after S-20
(CIMT). The header packet is actually also a command packet and may use the 7-bit command
window to issue low-latency commands. These commands can be part of the protocol itself for
flow control or other network requests and may also be used in a proprietary manner for DPSA
timed commands. These special DPSA operations will take advantage of hardware timers to
issue low-latency requests such as "reinitialize nodes", "collect beamform result," etc. The data
packets are also 20 bits in length and consist of 16 bits of raw data. If applying this packet format
to a slotted contention scheme, the number of data packets in each slot is generally a fixed
quantity between two and four and will be well known to all nodes in the finished DPSA. The
bits of the proposed packet format are shown in Table 2.1 below.

Ratchet Packet Header Ratchet Packet Data Fields (for 4 field

6 Command
packet)

8 Destination
1 Packet Status Bit (Occupied or Free)
1 Parity Bit
1 Always a One bit
2 Always a Zero bit

2
Always a One bit
Always a Zero bit
Bias Bit (may be used to lower bias)

1 Bias Bit (may be used to lower bias)
16 Data

8 Scrub Counter Always a One bit

2 Data Size Always a Zero bit

4 Immediate Source Bits Bias Bit (may be used to lower bias)

1 Service Bit *
1 Parity Bit
1 Always a One bit
2 Always a Zero bit
1 Bias Bit (may be used to lower bias)

16 Data
Always a One bit
Always a Zero bit
Bias Bit (may be used to lower bias)

16 Data
Always a One bit

2
1

Always a Zero bit
Bias Bit (may be used to lower bias)

* unacknowledged or acknowledged message

For four data fields For two data fields For one data field
Number of Total bits: 120 Number of total bits: 80 Number of total bits: 60
Number of Maximum Data Number of Maximum Data Number of Maximum Data
Bits: 64 bits: 32 bits: 16
Maximum efficiency: 53% Maximum efficiency: 40% Maximum efficiency: 26%

Table 2.1 - Proposed Packet Format

23

The ratchet protocol improves synchronization at the cost of long latency. The slotted-ring
model is ideal for a broadcast-heavy system, particularly GDS. Again, it can support two types of
transactions for latency independent or synchronized signaling with generic data and command
messages, respectively. Of course, high-level commands have the option to use either the
specialized command packet or a data packet. The advantage of the former is the ability to
simultaneously issue a command and pass a data message. Also the command messages can take
advantage of hardware timers and processor signaling. Lastly, if a simple ring is unable to sustain
the traffic requirements needed for this system, or if a ring is considered too hazardous for a fault-
tolerant system, the topology can be adapted to a bidirectional array.

2.5. DPS A Architecture and Algorithm Performance Predictions

In the past year, the first experiments with beamformers over simulated DPSA network
architectures were conducted. Using the ISE, the user can run simulations of different
bearnforming programs running on processors of varying speeds connected via networks of
varying bit rates. To illustrate the variations that can be analyzed, two bearnforming algorithms
are compared. These algorithms are the medium-grain, non-pipelined FFT beamformer and the
medium-grain, pipelined FFT beamformer. These algorithms are described in detail in the next
chapter and in Appendix B.

The important details of these algorithms for the ISE simulations are in the communication
stages of the algorithms. Both versions use the same basic algorithm. After each node computes
the FFT on its data, a communication stage begins in which each node broadcasts its data column
to all other nodes. At the end of the first communication stage, every node has the full data
matrix comprised of a column from every node. Each of the nodes then computes the
bearnforming results for its share of the steering directions. At this point, the second
communication stage begins each of the nodes sends its share of the results to a front-end node.
The front-end node receives these results and finishes the iteration. The next iteration, which
executes in exactly the same manner, immediately begins.

In the non-pipelined version, the communication stages occur exactly as described, all within
the iteration. In the pipelined algorithm, the communication stages are pipelined in such a way as
to overlap with computation. More specifically, after the Fourier transforms, each node sends its
data column off to all the other nodes. However, the nodes do not block waiting for reception of
this data. Instead, the nodes receive the data sent the previous iteration. This data should have
already propagated through the network and been buffered by the communication implementation
without the knowledge of the beamformer program. The data just sent for the current iteration
will not be received in the current iteration. In this manner, the nodes avoid any blocking and
begin their steering direction calculations sooner than if they had needed to wait for the data.
Thus, the steering direction calculations for the data from the previous iteration are overlapping
the communication of the data for the current iteration. The same situation occurs in the second
communication stage, where the results from the current iteration are sent to the future iteration
and the front-end node receives the previous iteration's results without the need for blocking.

Simulation results are provided for 8-node bidirectional array networks. The link speeds
between the nodes are varied between 2.5 Mbps and 10 Mbps. The performance of the
processors on each node is varied between the performance of a one-quarter-speed UltraSPARC-
1/170 and the performance of a full-speed UltraSPARC-1/170. The bearnforming algorithm is set
for 1 iteration, 64 samples per iteration, and 91 steering directions per iteration. In the case of the
pipelined program, 3 iterations are run so that the pipeline can be filled and drained. In this
situation, the sole purpose of the first iteration is to send the FFT samples to the timed iteration,
and the sole purpose of the last iteration is to sink the partial results sent out of the timed iteration.

24

Only the one full iteration in the middle is timed. The results for the non-pipelined program are
shown in Figure 2.10. Figure 2.11 shows the equivalent results for the pipelined version.

Medium-grain Non-pipelined Program Execution Time

0.05

0.045

I 0.04
o
w 0.035

■o

o ^ 0.03
o c « o
Ä-| 0.025
a) 2
E S 0.02

S 0.015

0.01

0.005

0

3
U
0)
X
UJ

Network Speed (Mbps)

Processor
Speed

(fraction of
Ultra-I)

Figure 2.10- Execution Time for Non-pipelined Program over Different Network and Processor Speeds

Medium-grain Pipelined Program Execution Time

0.05

0.045
*■

& 0.04
in

■o 0.035
o o A « c 0.03
m o
S w 0.025

0.02
c

_o 0.015
3
Ü « 0.01
X

111
0.005

0

Network Speed (Mbps)

Processor
Speed (fraction

of Ultra-I)

Figure 2.11- Execution Time for Pipelined Program over Different Network and Processor Speeds

25

In the non-pipelined program, when the network speed is set to 10 Mbps, the execution time
for 1 iteration of the program ranges from 10 ms for the fastest processors to 45 ms for the
slowest processors. When the network speed is slowed to 2.5 Mbps, the execution time with slow
processors increases to 50 ms. In addition, for the fast processors, the slow network causes the
execution time to slow to just below 15 ms. The ISE results show that slowing the network speed
on an array running the non-pipelined program will decrease the performance a small, though
measurable, amount. The slowdown due to a slower network is mostly independent of the
processor speed, indicating the independence of communication and computation in the non-
pipelined program. The ISE also shows that the execution time is very dependent on the
processor speed no matter what the network speed. When using a fast network, decreasing the
processor speed for the non-pipelined program by 75% decreases the performance by about 75%.
This result indicates that for a network speed of 10 Mbps, the execution time is dominated by the
computational requirements. When a network speed of 2.5 Mbps is used, the decrease in
performance is only 67 percent, illustrating that the communication time has become an important
factor and that the execution time is less dominated by computation.

The results for the pipelined program also show interesting trends. The most important result
is that the execution time is mostly independent of the network speed for the values simulated. In
most cases, for a given processor speed, the network speed does not have a significant impact on
the algorithm performance. This phenomenon is, in fact, the goal of the pipelined program.
Rather than requiring processes to block to wait for the data propagation through the network, the
communication is overlapped with computation on the data from the previous iteration. The
exception occurs when the network is very slow and the processors are very fast. In this
situation, the time required to complete the computation for the previous iteration data is not long
enough to allow the complete propagation of the current iteration data through the network, and
the processes must block despite the pipelining.

For fast networks, the real-world difference in execution time between the non-pipelined
version and the pipelined version is small. This result again illustrates the fact that for fast
networks, the computational time dominates the communication time; the pipelining has little
effect. For slow networks, the difference between the two algorithms is more noticeable. For a
network speed of 2.5 Mbps and processor speed of 50 percent of an UltraSPARC, the execution
time for the pipelined version is 16 percent faster than that of the non-pipelined version. For 75-
percent-speed UltraSPARC processors, this fraction improves to 19 percent. As processor speed
continues to increase, the relative performance of the pipelined program over the non-pipelined
program will continue to increase. Only when the processor speed becomes so fast that the
overlap with communication is not complete does the performance factor of the pipelined version
over the non-pipelined version stop improving.

With these results in hand, the performance differences between the two programs can be
compared against the real-world requirements of the sonar array. If slow networks must be used
for the sonar array, the pipelining of the second program may provide enough performance
improvement to warrant the additional overhead needed to buffer messages when nodes are busy
computing. On the other hand, if a fast network can be used, then the non-pipelined version
performs as fast as the pipelined program. In this situation, the additional complexity required in
the pipelined version would make it a poor choice for the sonar array.

These simulations will be extended for 16 nodes, 32 nodes, or more. The data gathered in
such experiments will provide more detailed information on which to make conclusions about the
best algorithm for the sonar array. In addition to running larger simulations, beamforming
algorithms other than the two medium-grain versions presented here and networks other than the
bidirectional array will be simulated. These simulations will allow more quantitative results to be
seen, and 8-node results will not have to be extrapolated for the large DPSA.

26

2.6. Conclusions

The ISE promises to provide a unique and interesting rapid virtual prototyping tool and has
delivered in several initial scenarios. The simulation of any user MPI program over any modeled
network architecture is a powerful method for design, verification, and validation. With the
software simulation tools developed here, new or existing MPI programs using standard sends
and receives may be tested and timed over a desired network architecture without the need to
create actual prototype hardware.

The ISE strives to be user-friendly. The MPI application programs do not usually need any
modifications to run over the BONeS network. The ISE includes several ease-of-use features,
such as the fast-forwarding function, which speeds up the simulation when there are no
outstanding requests on the network (explained in Appendix A). The ISE aims to make the
process of virtual prototyping as convenient to the developer as possible.

With the detailed information provided by the ISE for the conventional beamforming
programs, the performance of the final autonomous sonar array can be simulated with a high
degree of fidelity. In addition to the predictions made for the DPSA project, the ISE shows
excellent promise to be a cutting-edge development tool for future work in developing more
complicated distributed sonar applications with advanced beamforming methods on all forms of
arrays.

27

3. Parallel Conventional Beamforming
The beamforming algorithms chosen to parallelize initially for the DPSA are based on a

standard radix-2 Fast Fourier Transform (FFT) beamformer that will be reviewed with references
for the reader. Parallel algorithms with different levels of granularity were developed via coarse-
grained iteration decomposition and medium-grained steering decomposition. In addition to a
network-independent implementation (in which no assumptions are made about the
interconnection topology) all algorithms were mapped to unidirectional-array, bidirectional-array,
and ring network implementations. These algorithms are described textually and graphically
prior to analyzing models of computation and communication. These models will provide
quantitative support for intuition on how each of the algorithms should perform. Finally, the
results of actual parallel code are presented and discussed. The beamform algorithm timings
were collected from a cluster network of eight dual-CPU SPARCstation-20/85 workstations
connected via 155-Mbps-per-link (OC-3) ATM, a basic production and research network
configuration.

3.1. Sequential Conventional Beamforming

The essential operation of beamforming is to sum the manipulated outputs from many
spatially separated sensors. The spatial separation can be accounted for in the time domain using
time delays or in the frequency domain using phase shifts; both methods produce an equivalent
output. It can be shown that the computational complexities of the methods are equal, and it is
therefore redundant to the purpose of this document to consider both methods. Working in the
frequency domain is commonly known as an FFT beamformer and is the method analyzed in this
document. No attempts have been made to optimize the baseline sequential FFT beamform
algorithm other than through parallelization. Figure 3.1 shows the flowchart for the sequential
algorithm. The FFT code was adapted from [MORG94].

The first computation in each sample set is to calculate the window functions for each node
and to multiply that node's data samples by that factor. Next, the algorithm performs a FFT on
the windowed data from one node at a time. The algorithm then enters a loop that executes once
for each steering direction. The steering directions in this project all range from -90 to +90
degrees from perpendicular to broadside, with adjustable search angle increments. For each
steering direction of the loop, the algorithm multiplies the transformed data from each node by a
node-dependent steering factor, which is a function of the node's location and the current steering
direction. It is important to note that this steering factor multiplication is essentially the same
operation as correlation by plane-wave replica vectors. It is assumed that the steering factors are
recomputed for each iteration. The next step is to sum the corresponding samples across all
nodes, sample by sample, for all samples in the sample set. The algorithm then inverse-
transforms this summed data matrix. A single-valued result for the current steering direction is
obtained by finding the magnitude of the resulting signal. The algorithm stores this value before
looping to the next steering direction. At the end of the algorithm, all the values obtained from
the steering directions can be plotted versus steering direction so that the signal power can be
seen spatially by the user. The entire process is repeated for successive iterations with new
sample sets.

28

 ^

FFT <

Loop
For

Each
Steering
Direction

Loop
For

Each
Node

ir

Window
Function

Multiplication

y '

Steering
Factor

Multiplication Loop
For

Each

i r
Node

Data Column
Summation

i r

Find Signal
Power

i '

Collect
Results

i r

Loop
For

Each
Iteration

Figure 3.1 - Flowchart for Sequential FFTBeamformer. After each node collects acoustical sonar data, a
single processor performs the sequential algorithm. The final step of collecting results is done by plotting

the relative magnitude of the signal power at each steering direction for a single iteration.

3.2. Parallel Conventional Beamforming Algorithms

Coding of the parallel algorithms was divided into two methods related to network topology:
network-independently in which no assumptions are made about the underlying interconnection
topology and with network-dependencies. The network-dependent coding was termed a
rudimentary network simulation. The rudimentary network code simulates the complexity of
communication over different network architectures by making communication calls over no
more than one link at a time. Nodes cannot send data directly to any arbitrary node in the array,
but must follow the communication path that would exist in the physical array. For example,
forcing each node to send only to the node immediately downstream simulates the
implementation for a register-insertion ring architecture. In the network-independent programs, it
is possible for any node to send directly to another node with one communication call by way of a

29

completely-connected point-to-point network, as opposed to the more restrictive communication
patterns used in the rudimentary network code. The motivation for coding a given algorithm with
these different methods is that the algorithm can be run over more than one architecture to
determine the feasibility of using that algorithm on different architectures. Though the simulation
is not exact in the timing of particular real architectures, this method is useful for general
comparisons between different implementations of the same algorithm.

It is important to maintain constant simulation overhead across multiple algorithms to assure
valid comparisons. These comparisons are possible because all network-dependent programs
implemented here, including the baseline, were coded with the same rudimentary network
structure. The network-dependent parallel algorithms can be compared with the network-
dependent baseline strictly on the basis of the quality of the algorithms. The same is done for the
network-independent programs. The use of high-performance workstations instead of
beamforming processors provides useful data in gauging algorithm performance since the
algorithms are being compared only against each other and are using the same overhead structure
and assumptions.

The acronyms used for the different algorithms may become confusing. The reader is
referred to Table 3.1 below for a summary of the algorithm properties. A description of each of
the algorithms is then outlined.

Algorithm Granularity Communication Network Parallelism

CPUNF Coarse Unidirectional Independent [FFT, window multiplication]

CPUF Coarse Unidirectional Unidirectional Array [""]

CPNF Coarse Full Capability Independent [""], pipelined front-end node

CPBF Coarse Full Capability Bidirectional Array [""], pipelined front-end node

CPRF Coarse Full Capability Unidirectional Ring [""], pipelined front-end node

MPUNF Medium Unidirectional Independent [""], steering directions

MPUF Medium Unidirectional Unidirectional Array [""], steering directions

MPNF Medium Full Capability Independent [""], steering directions, signal power

MPBF Medium Full Capability Bidirectional Array [""], steering directions, signal power

MPRF Medium Full Capability Unidirectional Ring [""], steering directions, signal power

Table 3.1 - Summary of algorithm acronyms and properties.

3.2.1. Coarse-grained Parallel Algorithms

Two types of algorithms were developed which are coarse-grained in nature. The first type is
designed solely for a unidirectional linear array in which communication can only proceed from
the most upstream node to the most downstream node. The two algorithms of this first type are
the coarse-grain unidirectional FFT beamformer (CPUF) and the coarse-grain unidirectional
network-independent FFT beamformer (CPUNF), which are identical except that the former
contains a rudimentary network structure where messages must be forwarded through adjacent
communication paths. The latter uses single MPI calls instead of node hopping to send messages
downstream. The second type of algorithm is targeted toward fully-connected bounded-degree
networks (FCBDNs): a ring, a bidirectional linear array, and a network-independent version
called the coarse-grain full-capability FFT beamformer with ring network (CPRF), the same with

30

bidirectional network (CPBF), and again the same with no rudimentary network (CPNF),
respectively. Again, the network-independent version is identical to the versions with
rudimentary ring and bidirectional networks but places no restrictions on and makes no
assumptions about communication paths.

3.2.1.1. Coarse-grained Unidirectional Algorithms

Since communication is only one-way, the only node capable of receiving data from all nodes
is the most downstream node. The most downstream node in the array then must always do the
most work because the algorithm requires a summation of all nodes' data. This fact severely
limits the degree of parallelism possible.

NodeO
FFT

Nodel
FFT

Node 3
FFT

Responsibilities
of the Most J

Downstream A

Node (Node 0)

I Loop
For

I Each
Node

Data Column
Summation

Find Signal
Power

V

Loop
For

Each
Steering
Direction

Collect
Results

Loop
For

Each
Iteration

Figure 3.2 - Flowchart for CPUNF, Coarse-grained Unidirectional Network Independent FFT
Beamformer. The front-end node after each node has performed window function multiplication carries

out the main portion of the algorithm, which must be the most downstream node (Node 0). Notice the only
difference between this algorithm and the sequential one shown in 4.1 is data parallelism during the FFT

and window multiplication stages.

The parallelism technique exploited for the coarse-grained unidirectional algorithm is data
parallelism where same operation is performed on different data at the same time. The initial
FFT and window-function multiplication operations are done simultaneously in a data-parallel
manner. This stage of operation shall be termed the opening sequence and is found in all of the
algorithms. Once each node has completed its opening sequence, the nodes send their data down
the linear array to the first node. The first node then carries out the remainder of the sequential
algorithm, which means it executes the loop for all the different steering directions. Figure 3.2

31

shows the flowchart for how the parallelism in this algorithm takes place in the version with no
rudimentary network simulation, where blocks lined up horizontally are computed
simultaneously.

One important aspect of this algorithm is the communication pattern; the amount of
communication increases linearly with the number of array nodes. This result is due to the fact
that the front node can receive from only one node at a time, and all receives must be made one
after another. The nodes cannot reduce communication time by combining passing data because
each set must be multiplied by node-dependent factors for each steering direction.

For the version of this algorithm with the rudimentary network simulation, the
communication pattern is modified from that shown in Figure 3.2. Instead of sending all data
columns directly to Node 0 with a single MPI call, the data is communicated via a growing
"freight" train. The most upstream node sends its data column to its downstream neighbor. This
node then appends the received data column to its own and sends the two-column matrix to the
next downstream node. The process continues until the most downstream node receives the
entire matrix.

3.2.1.2. Coarse-grained FCBDN Algorithms

The next set of algorithms was developed for a fully-connected bounded-degree network
(FCBDN), which means that any node can communicate with any other node by way of some
communication path through the nodes. The algorithm no longer needs to be concerned about
which nodes can communicate with which other nodes. This algorithm takes advantage of
networks such as rings and bidirectional linear arrays. As opposed to the unidirectional case
where the first node always had to do more work than the other nodes, the algorithm for the full-
capability network allows the node doing the front-end work to be floating. That is, rather than
forcing all data to be sent to the first node every time, the data can be sent to a different node each
iteration. The concept is that of a floating front-end processor and all nodes use a deterministic
algorithm to figure out which array node is acting as the front-end for a particular iteration. This
ability makes possible better link utilization and better processor computational usage. The back-
end node no longer has the least work to do because eventually it will be designated the front-end
to which all other nodes send their data to be manipulated.

In addition to data parallelism, these communication enhancements introduce a type of
agenda parallelism, termed specified agenda parallelism. In agenda parallel applications, the
working processes figuratively reach into a grab bag of tasks that need completion. When they
pull out their assignments, they begin to work on them. In the specified agenda parallel concept,
the tasks that the working processes pull out of the grab bag are not random choices. Instead, a
selection algorithm is created so that the tasks pulled out of the bag are in a specified order.

The general FCBDN algorithm modifies the algorithm from the coarse-grained unidirectional
program and implements the floating front-end. The nodes all take their own transforms and
compute their own windowing function factor to multiply into their data. Then each node
determines who is the front-end by using a specified formula. This formula simply follows a
"round-robin" scheme in which the front-end for the next iteration is the neighboring node to the
front-end for the current iteration. Once a front-end is chosen for a particular iteration,
communication then proceeds to that front-end just as was done in the unidirectional version.
The front-end node then starts the loop for the several steering directions and gathers the results.

The algorithm follows the tradition of pipelining, where one operation does not need to be
completed before the next operation is started. Pipelining applies to this algorithm in that the
nodes can collect another sample set from the acoustic transceivers and begin the second iteration

32

before the first iteration is completed. At the beginning of the second iteration, the node doing
the first iteration front-end work stops what it is doing for just enough time to FFT the second
iteration data, multiply by the windowing factor, and send it off to the second-iteration front-end.
Once the data has been sent to the new front-end, the node resumes front-end work for the
previous iteration data. The process continues for consecutive iterations, where the front-ends
from the previous iterations stop their work for a moment. As the iterations progress, more and
more nodes are doing front-end work for their respective iteration numbers, all in different stages
of completion. The flowchart is shown in Figure 3.3.

NodeO
FFT

NodeO
Window
Function

Multiplication

Begin
Steering
Direction

Looping for
Iteration 0

NodeO
FFT

NodeO
Window
Function

Multiplication

Continue
Looping

NodeO
FFT

NodsO
Window
Function

Multiplication

Continue
Looping

Result

Nodel
FFT

Nodal
Window
Function

Multiplication

Nodel
FFT

Nodal
Window
Function

Multiplication

Begin
Steering
Direction

Looping for
Iteration 1

Nodel
FFT

Nodel
Window
Function

Multiplication

Continue
Looping

etc

Node 2
FFT

Node 2
Window
Function

Multiplication

Node 2
FFT

Node 2
Window
Function

Multiplication

Node 2
FFT

Node 2
Window
Function

Multiplication

Begin
Steering
Direction

Looping for
Iteration 1

Node 3
FFT

Node 3
Window
Function

Multiplication

Node 3
FFT

Node 3
Window
Function

Multiplication

Node 3
FFT

Node 3
Window
Function

Multiplication

Figure 3.3 - Flowchart for the CPNF, Coarse-grained Network Independent FFT Beamformer. Although it
looks more complex than the flowchart for coarse-grain unidirectional program shown in Figure 3.2, the

only change made is that there is no longer a downstream node that must be the front-end node. The
sequential tasks performed previously are now done in a pipeline fashion by all of the nodes.

In order to avoid assigning new front-end work to a node still doing front-end work from a
previous assignment, the algorithm must assure that there is no wrapping of the front-end
assignment until such time as a complete iteration of work can be finished. This algorithm is
implemented by having the front-end processors stop calculation on front-end work after a

33

specified number of steering direction loops to start the next iteration. For example, if there are 8
nodes scheduled to be front-end nodes and 91 steering directions to check for each iteration, then
the front-end nodes will stop their front-end work after every 12 executions of the steering
direction loop. Therefore, by the time the assignment of front-end nodes has wrapped around to a
node already assigned, that node will have finished the 91 steering directions (since 12x8 equals
96) and be free to take on responsibilities of another assignment.

In the network-independent version of this algorithm, all nodes use a single MPI call to send
their data column to the current front-end node. In the ring version, the communication proceeds
in the growing freight train from the node just downstream of the front-end node, around the ring,
to the front-end node. In the bidirectional version, the unidirectional communication is started at
both ends, so that the current front-end node receives part of the complete matrix from the right
and part from the left.

3.2.2. Medium-grained Parallel Algorithms

Two types of algorithms were also developed which are medium-grained in nature. The
types are completely analogous to the coarse-grained versions and differ only in the method and
granularity of parallelism. The medium-grain unidirectional programs (with unidirectional
rudimentary network and with no network) belong to the first type, and the medium-grain full-
capability programs (with ring rudimentary network, bidirectional rudimentary network, and no
network) belong to the second type.

3.2.2.1. Medium-grained Unidirectional Algorithm

The medium-grain unidirectional algorithm decomposes the steering direction loop
previously performed by a single node and makes the operations in the loop part of the
responsibilities of the several nodes. The major goal that this reorganization accomplishes is to
complete the summation as the communication is progressing in order to improve the degree of
parallelism and spread the computational workload. Rather than sending column after column to
the front node, each node receives a column from upstream for a particular steering direction,
adds its column for that direction to it, and sends the single summed column downstream. A
granularity knob was built in to allow multiple steering direction columns to be communicated at
the same time. Rather than sending just a single column to be summed, each node works on
several steering directions. With more steering directions communicated each time, the loop
occurs fewer times. There is, however, a drawback in that the medium-grained form of
communication (with summation) must be carried out multiple times for each iteration. There is
a trade-off between communicating with the coarse-grained algorithm but only doing it once each
iteration (each sample set), and communicating considerably fewer values in the medium-grained
algorithm but doing it several times per iteration. The flowchart for the rudimentary network
algorithm is illustrated in Figure 3.4. For the network-independent version, all nodes send their
steering direction columns to Node 0, which receives them one at a time and sums them with the
columns already collected.

34

NodeO
FFT

Nodei
FFT

Node 2
FFT

Node 3
FFT

Loop
For

Each
Iteration

1 1 i J
NodeO
Window
Function

Multiplication

Nodei
Window
Function

Multiplication

Node 2
Window
Function

Multiplication

Node 3
Window
Function

Multiplication

1 1 1 1
Multiplication
for Several

Steering
Directions

Multiplication
for Several

Steering
Directions

Multiplication
for Several

Steering
Directions

Multiplication
for Several

Steering
Directions

' >

1
Summation

' '
Summation

Summation

i ' Loop For

Find Signal
Power

Remaining
Steering

Directions

Collect
Results

' r

Figure 3.4 - Flowchart for the MPUF, Medium-grain Unidirectional FFT Beamformer. Parallelism is
applied at the level of the steering directions. Each node is responsible for multiplying the data by a

predetermined number of steering direction factors, relieving the front-end node from doing this
sequentially. Although less computation is done by the front-end processor, more communication stages

per iteration must occur.

3.2.2.2. Medium-grained FCBDN Algorithm

The medium-grained algorithm developed for fully-connected bounded-degree networks
exploits steering direction decomposition. It incorporates both data parallelism and result
parallelism. The data parallelism arises from the fact that the processes work with local data
independently whenever possible. The algorithm also employs result parallelism in that the
processes each calculate separate parts of the result which are collected at the end of the iteration.

First, data parallelism occurs in the initial transform and window factor multiplication
operations in each iteration, just as in the previously described algorithms. Once each node has
finished these steps, the algorithm prepares to split up the steering direction loop.

The result parallelism arises from the fact that each node calculates the beamform result for a
certain number of the total set of desired steering directions. However, before this process can
proceed, any participating node must have a copy of the data from all nodes to make a correct
calculation. As such, this algorithm incurs considerably more communication than the coarse-
grained algorithms and the interconnection scheme will have a more significant effect on
performance.

35

For a ring network, the algorithm specifies that a growing freight train is used for the
communication around the ring. The freight train communication begins when the back-end node
sends its data column (which has already been transformed into the frequency-domain and
multiplied by the weight factor) to the second-to-last node. The second-to-last node then appends
this column to its own, resulting in a matrix with 2 columns. This node then sends the matrix
downstream, where the next node again appends its data column. The process continues until the
front node has received the freight train from all upstream nodes. At this point, the front node has
all the data and can proceed with calculating the results for its share of the steering directions;
however, the other nodes cannot begin until they receive the entire freight train. Therefore, the
front node uses the link between it and the rear node to start the freight train around the ring once
more. In this case, however, the train's length is decreasing as it passes between nodes. After the
front node receives the full matrix, it does not need to send the entire matrix to the rear node
because the rear node already has its own column stored. Likewise, the rear node does not need
to send the entire matrix to the second-to-last node because the second-to-last node already has its
own data column and that of the rear node. At each node in the second half of the
communication, the freight train could decrease in size by one column. The flowchart for the ring
algorithm is shown in Figure 3.5 and the communication strategy for the program is shown in
Figure 3.6.

$\JNodeoT^

NSWVtWNVfl

^ Node 1 R$ 1^1 WWWWj^.

Send Results \

Loop
For

Each
Iteration

Loop
For

Each
Assigned
Steering
Direction

Figure 3.5 - Flowchart for MPRF, Medium-grain Full-capability FFTBeamformer with Rudimentary Ring
Simulation. All nodes can receive data from any other node so that the ability of parallelizing the steering

factor multiplication is extended to also being able to calculate the signal power for the given steering
directions.

36

Figure 3.6 - Ring Communication for MPRF, Medium-grain Full-capability FFT Beamformer. The
communication pattern shows that the data must travel in a growing freight train to the front-end node and

in a shrinking freight train around the ring until all nodes have the full data matrix.

The algorithm and communication pattern for the bidirectional array are shown in Figure 3.7
and Figure 3.8, respectively. A growing freight train, as discussed above, is started at both ends
of the array. Once a node receives both trains, it has the full data matrix. For the network-
independent version, each node broadcasts its data column to all other nodes, then receiving a
column from each other node, accomplishes the communication. At the end of the process, each
node will have the full data matrix.

37

Figure 3.7- Flowchart for MPBF, Medium-grain Full-capability FFT Beamformer with Rudimentary
Bidirectional Array Simulation. This algorithm differs from the others in its class by the communication
pattern of the data prior to finding the signal power. This pattern is shown in more detail in Figure 3.8.

38

Figure 3.8 - Bidirectional Array Communication for MPBF, Medium-grain Full-capability FFT
Beamformer. Because the topology is a bidirectional linear array, communication is overlapped by

sending data in both directions simultaneously.

Once the communication is complete, the result-parallel aspect of the medium-grained
algorithm is employed. Each node begins work on its share of the steering directions. The
steering direction on which a node is to begin computing is determined by that node's relative
location from the front node. The number of steering directions a node is to compute is based on
dividing the total number of desired steering directions by the number of nodes. When the
number of nodes cannot evenly divide the number of steering directions, the nodes closer to the
front calculate more directions. For example, if 4 nodes are to calculate 6 steering directions,
node 0 calculates directions 0 and 1, node 1 calculates 2 and 3, node 2 does 4, and node 3 does 5.

After a node is finished computing the results for its steering directions, it must communicate
them to the front node for final collection. For the ring and bidirectional array, the rear node
initiates the communication by sending its share of the results in a sub-array to the second-to-last
node. When that node is done, it will receive the sub-array from upstream, append its result sub-
array to it, and send the collection downstream. The procedure continues much like the growing
freight train of the data matrix communication, with the exception that once the front node
receives all the results, the iteration is over. For the network-independent version, each node
simply sends its result sub-array with one MPI call to the front node.

3.3. Performance Prediction

Analytical models were built for many of the decomposition methods described for the DPSA
beamform algorithms. These models provided foreknowledge of any algorithm's complexity and
likely speedup. In addition, the implemented algorithms were also compared to justify their
performance. Of course, the fidelity of the models is low, so actual performance times cannot be
compared, but the relation between one analytical model and another should loosely hold from
one program to another.

The performance of the parallel beamformers is dependent on a moderate number of free,
mutually-independent parameters. These parameters were combined into predictive models of
algorithm performance. Instead of reducing the predictive models to order notation (i.e. 0(N)),

39

the models retain the few free parameters in order to obtain better fidelity. A model was built as a
combination of computation and communication predictors allowing some degree of overlap.
The general case is described by Equation 3.1.

_. . /Computation Communication ,,
Tune-nun , (1

\ FLOPS Bandwidth /

. /Computation Communication^
p) + max - .

\ FLOPS Bandwidth / Equation 3.1

Simply stated, the predicted execution time of an algorithm is the sum of the computational
time and the communication time minus the overlap. This overlap is represented as a percentage
(called p) or the smaller of the two components: communications and computation. Note that the
overlap can be no greater than whichever component is the smallest (thus the use of the minimum
operator in the equation). An overlap of 100 percent corresponds to either computation
completely overlapping communication (with additional computation to spare) or communication
completely overlapping computation (with communication left over).

The computational models were created by combining a set of basic building blocks built in
Mathcad and shown in Table 3.2. These functions are derived from blocks of operations in the
conventional beamforming algorithms. Each function is a representation of the number of
floating-point operations required to complete the particular task in the beamformer. The FFT
beamformers use all six of these functions while the time domain only uses ?matrix_sum, A*indow_muit>
£fmd_energy and £pick_angie in the calculations. The fmatrix_sum represents the operations needed to reduce
a data matrix into a single vector of angle results (via a sum operation). The fw>ndow_muit functions
represents multiplication of a node's input data vector by its windowing factor. The operations
for reducing the vector of angle results to scalar energy values for each angle is included in the
?find_energy function. The /pick_angie function includes finding the angle of greatest signal energy. The
fsteering_muit function is used only in FFT beamformers and covers the operations required for
applying a phase shift to the complex Fourier data before applying the matrix summation. Lastly,
the ?FFT_time function accounts for the transform of the incoming data vector into the frequency
domain in FFT beamformers.

'matrix sum(S.N.M) = S.N-(M-l) 'window mulrCM.N.P) =■ M-N-p tpickjmgle^) := 4S

'FFT_tüne(N)^N.m.N t-eering_muIt(S.N.M):.7.S + 5.S-N-M tfindenerBy(S.N)»2-S-N

M - Number of Nodes
N - Number of Samples in Sequence
S - Number of Steering Angles
ß - Reduction in Data by Non-linear Techniques

Table 3.2 - Computational Building Blocks Used in Prediction Models

These building blocks were then combined to create models (shown in Table 3.3) with
differing degrees of parallelism (DOP) using the decomposition techniques previously described
for the algorithms, including control and data parallelism. The table includes both parallel
frequency-domain and time-domain conventional beamforming algorithms as well as non-linear
optimized time-domain algorithms. Note that the numbers of operations are calculated on a per-
node basis. The complexity of the time-domain algorithms is less than that of the frequency
domain algorithms since they do not need a pre-processing stage (i.e. FFT), and they lack the
complex multiplication found in the frequency domain. However, the conventional time-domain
algorithms require a much larger sample space, especially if the number of nodes, N, and the
number of steering directions, S, is large. The optimized non-linear time-domain techniques
decrease the size of this sample space to that of the frequency domain. Figure 3.9(a) plots the
computational requirements for frequency-domain algorithms (including both the unidirectional

40

and full-capability algorithms). Figure 3.9(b) shows the time-domain algorithms and the full-
capability frequency-domain algorithms. Notice the scale of this figure has been changed so that
more detail can be shown. Lastly, Figure 3.9(c) shows only the time-domain algorithms
compared to one another. Note that in each of these plots, the abscissa is the number of nodes
(M), and the ordinate is the worst-case number of floating-point operations per node per iteration.
Also note that MPNF5 refers to the non-pipelined medium-grain full-capability FFT beamformer,
and CPNF4 refers to the coarse-grain full-capability FFT beamformer. The coarse-grain and
medium-grain unidirectional algorithms are labeled CPUNF and MPUNF, respectively. The
pipelined programs use a parameter y, which is a function of the number of nodes, to indicate the
amount of overlap of pipeline stages. Lastly, note that fSum_and_iFFr is the sum of the operations in a
matrix sum and an FFT, *FFT_and_window is the sum of ?FFr_time and Avindow_muit for one vector of data,
?freq_adj includes the operations required in the optimized time-domain algorithms for finding the
base cycle of the signal, and a represents the fraction of iterations in which this cycle check is
done.

°P»rrr_Se,n«ntial(S.N.M) := «m_«dWindow(N> M* «.t«Bintmiilt<s-N.M> + tsmn_M>dJFFT(S .N.M) ♦ <rnid_,Mre,(S.N) ♦ tplckj,ngI,(S)

°>SMPNF5(S.N.M) :. tFFT_md_Wü.do»-(N) ♦ N,„rü,^,n»lt("
a(^)-N-M) ♦ ts,m_,ndjm(c«il|Aj ,N.M| ♦ »^„„^c.iljijj ,NJ . t lufk!mglf (S)

Op»CENF4(S.N.M.-r) := (1 _ ^(M)'m_<u.d_Wind,.*(N> + 's„.„i,^mul((S .N.M) + t„lm_M1d_IEn:<s.N.M) ♦ tfind_M1„w(S.N)j ■(1 - „(M)> ♦ lpick_„l?lf(S)

Ol«MpUHF(S.N.M) :-- tmjmd_Wmd™(N> + 8 S + 5 N S + tnla_md_IEFI(S.N.M) ♦ tfmil_m„jy(S,N) ♦ tpkk_B1^,(S)

°I'sCPUNF(S-N-M-'>') == »FFT_ai.d_Wittdo»(N) + ,ite,rint.mult(S-N-M) + 'smn_and.IEFT(SN-M) + «find_.nw«y<S-*r> + «picfc_»gle(s)

°Psbutt.rfly_conv.iilion«l(S-N>1) » = jj * 'rmd_«n0rty(S.N) + 'pick.anjl^8)

OP'butoriV.optiinkedtS-N.M) : = = ♦ ^„„^(S.N) ♦ t piekMlglB(S) ♦ e.-tfr.^CN)

°l"pipdin.d_eo..v.ntioi.»l<S-N-M> := (tBnd_.n,r8y<S-N) + *m.trix_mm<s.N.M) * <™ndowm«lt(M'N> + 'pick.nngl^8))-«1 " T(M»

°P»pipdi»ed_opäi»iI.d<S.N.M> := (•fü.d_™.Igy<S-K> + 'm.tm_nim<S-N/i(M)'M) + *(M)-trtndowJmlI,(M.K) + tpj^^tS)) (1 - y(M» + a tf„Ladj(N)

,. *T „» '«"d ™.rgy<S-N) + 'matrix nmi(s-N.M> + '«indo»- mnlt(M-N)
°P»GDS_«mv«nfioiial<s.K.M> : = ^~^ = + t&kjufrW

,««,«, ,find.Mr«j-(S-N) + tIB,te^(S.Nß(M).M)tp(M).trtldo<v.mlllt(M.N)
°I" GDS.optohedtS.N.M) : = = JZ = ♦ 'piek_.n(le<S> + <" fr«,_»dj<N>

Table 3.3 - Parallel Decomposition Equations

41

2.5 10

«, 2-10"
5

K 1.510* o
ti
a

Xt
E
Z

110w

5 10

i r ~i r

CPUNF

MPUNF-.

5 10 15 20 25
Number of Nodes (M)

(a)

30 35

2 10-

■g 1.5-10"
«J

a
O

? 1105

o
xt
e
z

5-104

1

i

1 1 1 1 1

\
. \

*' "~-v . - ,..\ v, MPNF^-",

CPNF

-
Butterfly Conventional

Pipelined and GDS Conventional
1 1 1 1 1 1

10 15 20 25
Number of Nodes (M)

(b)

30 35

4-10

3.5-ID-

S'KT

2 - .5 104

a
O
o 2-104

a .n
1.5 104 h

3
y

M04

5000

0

V

1 1 1 1 1 1

Butterfly Conventional

"""•--- Butterfly Optimized

;->^^:jPipejjned and GDS Conventional

'*--„. Pipelined and GDS Optimized

J 1 l I l '
5 10 15 20 25 30 35

Number of Nodes (M)

(c)

Figure 3.9 - Floating-point Operations per Iteration for Parallel Beamformers

42

The communication model was set up similarly to the computational models except that there
was only one building block. This function (shown below in Table 3.4) has a number of inputs,
which allows it to coarsely describe any network. The network aggregate factors describe the
approximate degree to which two proposed network models (register insertion ring and
bidirectional insertion array) utilize the network. On the average, the ring (as shown from the
formula) will support two transactions at any time. On the other hand, the bidirectional array will
support about two transactions at any given time for small networks (e.g. four nodes or less) and
will support four transactions for large networks.

Assumptions:
- broadcast capable
- fully network connected
- no contention hit
- connectionless (no call setup)
- all links evenly loaded
- no acknowledgements

£ - overhead in floats per packet
6 - number of divisions of transmitted data
K - size of message per iteration (in floats)
ft - network's a tire gate bandwidth factor

n(K,5,£,\(/)
MWM)

Table 3.4 - Communication Functions

V bidirectional^ := 4 " ^

The overall communication cost of an algorithm was then calculated by summing the
communication cost of all the transactions required by the particular algorithm. This procedure is
shown below in Table 3.5. Note that the table shows the communication only over a register
insertion ring (since the V|/nng factor is used instead of the ^bidirectional factor). The same method
applies for the bidirectional array except the aggregate bandwidth factor for the bidirectional
array is substituted. The communication cost for the conventional time-domain algorithms is
much greater than the frequency-domain algorithms. This result is due to the large sample space
required of the time domain. The optimized time-domain algorithms take advantage of much
lower communication complexity through circular shifting. As a result, the optimized time-
domain and frequency-domain algorithms have similar communication complexity patterns while
the conventional time-domain algorithms suffer from large communication latencies.

I.N.S) ;M-N.M...r^(M)) + tc^(s-u.J±Ul-l...rW ,(M) Cnmm_ringMpOT5(M,.i. .*, .- .comm^«■« .*».. .r nagy"-/j » >

Comm_rmgcmF4(M.N.S) :. ttonn[W-(M- 1).M- Lur^-, ,

C.mm_ringMruOT(M,N,S) :. tIümm[S N (M - 1).M- l,».yring(M) ,

CMMn_mgCH]TO.(M,N,S) :=tCOMn[N-(M- D.M- l...yring(M)j

Conun_.iiigb„H,tfly_convenHroiJ(M.N.S) :. t tmm(S M N,M.».y nngtM)) + t conm(S-N.M.«.r ^(M))

Coi«n_mtlmttwfly_^tiBtod(M.N.S):.tca^(S.M-N-g(M),M..,yrint(M))ttCOBm(S-W,M,«,r ^(M)) ^ tcmm|(l<-B ,M.«.y

:(M)1

*(M))

Comm_rmepip(flined_canvenäonid(M,N,S) := ' conun M Mil

C»am_iia«:pip,|inei_üpMlBmi(M.N.S) » 1 (M N g(M) ,M.«y ^(M)) + t (g.M.t.y ^(M)) + t comm(l6 at ,M...y mg(M)

M- ["ilf|)M + Nj M.'.r rin,(M) Comm_ringGI,s_convMllion!d(M.N.S) := tcomm + <comm(S-M''-»WM>)

Comm_ringGDSoptünil,d(M.N,S) :. t conmi(M N 0(M) ,M.«.„ „^(M)) + t eomm(S.M...r rf^CM)) + t comm(l« or M.s.r ri„g(M))

Table 3.5 - Communication Cost Equations

Comparing the communication of the four FFT decompositions, the equations predict that the
non-pipelined medium-grain full-capability (MPNF) program, the medium-grain unidirectional
(MPUNF) program, and the coarse-grain full-capability (CPNF) program will fare the best, while
the coarse-grain unidirectional (CPUNF) program will do poorly. Figure 3.10(a), below, shows a
Mathcad generated plot of the four FFT algorithms. Due to the poor performance of the FFT

43

unidirectional versions in both computation and communication, the remainder of this section
concentrates on the two best frequency decompositions: MPNF and CPNF. The same situation is
true for the time-domain butterfly algorithm, which does not fare as well as the pipelined and
GDS techniques. Figure 3.10(b) below shows the communication of the time-domain
beamformers where it can be seen that the pipelined and GDS algorithms perform very similarly
while the butterfly technique, as discussed in Appendix B, has higher complexity. Figure 3.10(c)
shows the communication for the full-capability FFT beamformers (CPNF and non-pipelined
MPNF) against the conventional time-domain decompositions. Lastly, Figure 3.10(d) shows the
communication for the same FFT algorithms compared to the time-domain algorithms with non-
linear optimization.

£1
E £
i8

10s -

-

1 1 1 1 1

MPUNF '

-

/

,'''

-'
1

CPUNF. CPNF. and MPNF
■i '■- -■-1 1—

10 IS 20 25
Number of Nodes (M)

(a)

El of
a E
E E
iB

Butterfly Conventional

Pipelined and GDS Conventional

—• Pipelined and GDS Optimized
Butterfly Optimized _ . \.... _

- + ,•„-, ;-r : r ' i \ i
10 15 20 25

Number of Nodes (M)

(b)

30 35

~ CO
a c o o
rr'-s

£ £
28

1-10*

Pipelined and GDS Conventional

/

MPNF and CPNF

J _l_
10 15 20 25

Number of Nodes (M)

(C)

I?
£ M 1500

§§
£!
i. § 1000

i E
z3 „„

1 i i 1 1

-
MPNF.- y

..;.'CPNF

- :. • '■

.y Pipelined and GDS Optimized

-' 1 1 l l r i

10 15 20 25
Number of Nodes (M)

(d)

Figure 3.10- Floating-Point Communications per Iteration for Parallel Beamformers

The total execution time was calculated using Equation 3.1 at the beginning of this
subsection. Execution time was predicted by fixing a FLOPS (floating-point operations per
second) rating to the network, a Mbps (megabits per second) rating to the processor, and an
overlap factor of computation and communication to the variable p. For these results, the system
was rated at 10 MFLOPS and 10Mbps with a p factor of 0.5. Figure 3.11(a), below, shows the
coarse-grained FFT algorithm performing slightly better than the medium-grained non-pipelined
FFT algorithm, because it does more computation and communication. For the time-domain
algorithms, shown in Figure 3.11(b), the pipelined and GDS versions are equal in complexity.
This result is no surprise since both the analytic equations for operations and communications can
be algebraically manipulated to equal each other. This plot also shows the superiority of the

44

fractional-steering and circular-shifting methods (non-linearly optimized beamformers) to the
non-optimized versions. The execution time of the time-domain beamformers is mostly due to
the long communication, whereas, the bulk of the execution time for the frequency-domain
algorithms is in the computation. Since the optimized time-domain methods work mostly to
minimize the size of the sample space, the communication is minimized yielding tremendous
improvements. Figure 3.11(c) combines Figure 3.11(a) and Figure 3.11(b) together. Notice that
with a low number of nodes, the time-domain conventional algorithms perform very well, but as
the number of nodes increases, the sample space gets so large that the communication
requirements grow exponentially. With 10 nodes, FFT algorithms and non-optimized time-
domain algorithms seem to perform equally well. Again, since the optimized time-domain
decompositions reduce the size of the sample space, they outperform both conventional time-
domain and frequency-domain algorithms for any number M. The last plot in this sequence
shows the speedup of the frequency-domain algorithms and the conventional time-domain
techniques over the sequential FFT beamformer. Note that it appears that the time-domain is
achieving super-linear speedup in the range of 2-10 nodes, but this anomaly is simply because
they are being compared to the frequency-domain sequential version. However, for more than 10
nodes, the performance of the time-domain programs falls off and shows poor speedup compared
to the FFT sequential algorithm. This plot also reveals the low computational complexity of the
time-domain beamformer but the large communication complexity when the number of nodes is
large.

\ MPNF/

-. \ /V V V CPNF..-

S on«

10 15 20 25
Number of Nodes (M)

/
Pipelined and GDS Conventional

Pipelined and GDS Optimized

(a)

10 15 20 25 30 35
Number of Nodes (M)

(b)

£ 0JD6
P Pipelined and GDS/Conventional

-^ MPNF and CPNF

Pipelined andGDS Optimized

10 15 20 25

Number of Nodes (M)

(C)

g.-$ 10 -

I §

CPNf;-'' /""'

/
y Pipelined and GDS Conventional

10 15 20 25 30 35
Number ot Nodes (M)

(d)

Figure 3.11 - Expected Execution times, FLOPS rating = 10M, Network Bandwidth = 10Mbps

Figures 3.12(a)-(f) show another set of predicted execution times for three FFT algorithms
(the sequential, the medium-grain non-pipelined MPNF, and the coarse-grain CPNF) and the
three non-linearly optimized time-domain algorithms (the GDS-TD implementation, the pipelined
program, and the Butterfly). The execution time is plotted against two variables: number of

45

steering directions, S, and number of samples, N. The number of nodes, M, was fixed at 32 for
these plots. The z-axis shows predicted execution time per iteration. Again, the system was rated
at 10 MFLOPS and 10Mbps with a p factor of 0.5. Notice in all cases that the complexity of the
problem increases linearly with N and linearly with S. The medium-grained FFT algorithm and
coarse-grained FFT algorithm perform an order of magnitude better than the sequential algorithm
while the pipelined time-domain and GDS time-domain algorithms perform two orders of
magnitude better. The time-domain Butterfly algorithm, however, is only twice as fast as the
sequential FFT beamformer and is outperformed by all other algorithms.

Execution Time: Frequency Domain - Sequential Algorithm Execution Time Frequency Domain - Coarse Grained (CPNF4)

0.15-

0.1-

0.05-

Steering Angles in Set (S)

?«lilllt^.

o 0

(a)

-3 Execution Time: Frequency Domain - Medium Grained (MPNF5)

Data Points in Set (N) Steering Angles in Set (S)

Steering Angles in Set (S) Data Points in Set (N) Steering Angles in Set (S)

(C)

Execution Time: Time Domain - PipeUned

2

1.5-

1-

0.5

Steering Angles in Set (S)
0 - 0

(e)
Data Points in Set(N) Steering Angles in Set (S) Data Points in Set (N)

(f)
Figure 3.12 - Predicted Execution Times versus Number of Steering Directions and Number of Nodes

3.4. Performance Results

This section presents the performance of the parallel programs in terms of speedup over a
baseline. Before comparing the algorithms in this section, it should be emphasized that the
execution times collected depend heavily upon the speed of the processor, and the throughput and
latency of the interconnection network. The testbed consisted of a cluster of 85-MHz
SPARCstation-20 workstations connected by 155-Mbps (OC-3) ATM. The anticipated sonar
array architecture will consist of slower processors and a lower throughput network.

For each program, the baseline is chosen so that the assumptions lead to valid conclusions.
For example, all network-independent programs are compared against the network-independent
baseline in which all dumb nodes send their raw data to the front-end intelligent node via one
MPI call. The network-specific programs are compared against a unidirectional array of dumb
nodes in which the nodes append raw data to a freight train that arrives at the front-end intelligent

46

node. In both versions of the baseline, the intelligent node executes the sequential program using
data obtained from the dumb nodes, which do no computation on the data. The speedup numbers
obtained for all the network-independent programs are shown Figure 3.13. The beamformer was
set to steer every half-degree in these charts. Figure 3.14 shows the respective efficiencies
measured as the ratio of speedup to number of nodes. Recall the following acronyms: the coarse-
grain unidirectional programs are CPUF for the version with the rudimentary unidirectional
network simulation and CPUNF for the version with no rudimentary network. CPRF, CPBF, and
CPNF are the coarse-grain, full-capability FFT beamformers with rudimentary ring simulation,
rudimentary bidirectional array simulation, and no rudimentary network, respectively. The same
pattern holds true for the medium-grain counterparts except that the first letter of the acronym is
"M" instead of "C."

Sp««dup ovar Ba»lin«; ATM; SPARC20; «ngladlvsO.S

03 processor*
■ 4 processors
05 processors
Q6 processors
■7 processor*
□B processors

J m ' m m

ii

m

J ji

CPUF CPUNF CPRF CPNF MPUF MPUNF MPRF

Figure 3.13 - Speedups versus Number of Nodes. The angle division set to 0.5 leads to 361 steering
directions within the 180-degree space. The most notable features of this graph are the relative

performance numbers, the invariant speedup for the coarse-grained unidirectional algorithms, and the
inverse speedup for the medium-grain, unidirectional, network-independent algorithm.

Al

Efficiency ovtr Biialln*; ATM; SPARC20; angtedKfeO.S

□ 3prac«sora
■ 4procoMor*
Q5procauore

■ 7proc*«»on

St
hr

t 1
te

CPNF MPUF MPUNF UPRF MPBF
f^*T

Figure 3.14 - Efficiencies of Programs versus Number of Nodes. This graph illustrates the ratio of speedup
to number of nodes (i.e. the percentage of ideal speedup). For nearly all of the algorithms, the efficiency is
decreasing, leading to the conclusion that such algorithms may encounter a scalability limit as more nodes

are added. Simulation of larger arrays will help establish if such a limit exists.

As can be seen in the figures, the coarse-grain unidirectional algorithm does not provide any
speedup over the baseline. In these algorithms, there is very little parallelism. In fact, the only
difference between the baseline and these programs is the parallelization of the opening sequence
(FFT and window factor multiplication) which was shown to represent a small portion of overall
execution time. The coarse-grained algorithm for fully-connected networks improves upon the
unidirectional algorithm's performance considerably. The algorithm scales near-linearly as more
nodes are added, which can be seen by the slow decrease in efficiency. Speedups reach above 6
for 8 nodes, giving efficiencies of more than 70 percent. The medium-grained unidirectional
algorithm performs better than the coarse-grained unidirectional algorithm due to the increased
degree of parallelism. The medium-grained unidirectional network-specific program scales better
than the coarse-grained unidirectional program but not as much as the coarse-grained fully-
connected programs. It reaches speedups of around 2.5 for 8 nodes giving an efficiency of just
over 30 percent. The medium-grain network-independent unidirectional program begins to
perform poorly with many nodes. This result can be explained by realizing that the front-end
node is being inundated with communication requests (all nodes send their steering-direction data
directly to the front-end node via a single MPI call). Because this program sends considerably
more data for each iteration than the coarse-grained unidirectional network-independent
counterpart or the baseline, the ATM network goes into saturation and begins dropping cells
requiring the packets to be re-sent. The medium-grained fully-connected algorithms perform
with speedups just below those of the coarse-grained programs. This result is due to the increase
in the amount of communication for the same amount of computation. Speedups reach just below
6 for 8 nodes resulting in efficiencies in the lower 70's. However, the medium-grained
algorithms have the advantage over the coarse-grained algorithms of parallelism within an
iteration. This fact means that the results of an iteration are available sooner in the medium-
grained algorithms. In the coarse-grained algorithms, the results for an iteration are only
available after the pipeline has been traversed.

48

Since the performance of the medium-grain algorithms depends on the number of steering
directions, Figure 3.15 shows the speedups of the programs for three different steering-direction
increments with an 8-node beamformer. The efficiencies for these speedups are shown in Figure
3.16.

Spssdup over Baseline; ATM; SPARC20; 1 Processors

7-

6-

0*ngtociv-2

langiodfttal

□ •ngMw-O.S "
n n

5-

f
to

3-'

2-'
— -

1-' H 1 Iflj 1
!A'H 1 »H 1
1 1 &«H 1

iSJLL IB L ü<H_k
CPUF CPUNF CPRF CPBF CPNF MPUF MPUNF

M «*-.,

Figure 3.15 - Speedups versus Number of Steering Directions

Efficbncy cmr Butlln«; ATM; SPARC»; • Procauora

Oan^adiv-2
■angbdv-1

CPUF CPUNF

Figure 3.16 - Efficiencies versus Number of Steering Directions

49

The coarse-grained unidirectional performance remains poor for all steering-direction
resolutions. The coarse-grained fully-connected algorithms improve their efficiency as steering
directions are added due to the fact that the no more communication is needed to do the additional
steering directions. The medium-grained unidirectional program must balance the amount of
computation with the amount of communication. As more steering directions are added, more
communication is necessary. Furthermore, the granularity knob must be set so that this
communication occurs in more pieces (so that the pieces are not so large as to overwhelm the
MPI implementation and cause the implementation to use synchronous sending). The additional
communication is not balanced by the additional computation of more steering directions as the
resolution is increased to every half degree. Thus, the peak in performance is seen for a
resolution of 1 degree. For the network-independent medium-grained unidirectional algorithm,
the performance is poor across the board due to the network saturation. For the medium-grained
fully-connected programs, the performance increases as steering directions are added, which is
due to the fact that each node has more work to do (a larger share of steering directions) as more
directions are added, but no more communication to complete.

3.5. Conclusions

The first steps completed in conventional beamforming for phase one of this project have
been expanded upon and completed for phase two. Additional algorithms to improve upon the
original parallel algorithms were created to either provide performance improvement or simply
provide an alternative algorithm that may work better under different architectures. These
programs were fully examined for overall execution time, speedup over baseline, etc. They were
also broken down into component parts, each of which was investigated to determine where
improvements could be made in coding the algorithm or changing the algorithm itself.

The results of this section have concluded that the coarse-grained programs provide the best
raw execution time. The medium-grain programs follow close behind and offer a more robust
parallelization. Either of the full-capability FFT beamformers will provide the desired
performance for the autonomous sonar array.

Phase two of the project also involved implementing extensions to the time-domain
beamformer so that it may better compete in execution time with the fast-performing FFT
programs. Though no argument can be made that the time-domain program can outperform the
FFT beamformer, the research into the time domain led to the GDS approach to real-time sonar
array processing. This knowledge has turned out to be invaluable toward implementing the fault-
tolerant aspects of the autonomous sonar array (as described in Appendix E).

50

4. Advanced Beamforming Algorithms
Split-aperture conventional beamforming is one of the latest beamforming techniques

considered for decomposition over parallel processors. Because of the increase in complexity,
the system has a higher degree of parallelism (DOP) and is thus likely to achieve better speedup
over its sequential version than the CBF algorithms previously implemented. This section
focuses on the fundamentals of split-aperture CBF and a few decompositions that are currently in
experimentation.

Due to the characteristics of conventional beamforming algorithms and high computational
cost, implementation of the algorithms requires high-speed and high-power systems. Using the
Split-Aperture Conventional Beamforming (SA-CBF) algorithm this problem can be reduced. By
using x-interpolation and the phase-compensation method, the resolution of the beamforming
output can be increased even with a small number of steering angles. Also the Smoothed
Coherent Transform (SCOT) and the phase transform make the beamforming plot more precise
and accurate with less variance. The details of algorithm and computer simulation are given in
Appendix C such as more in-depth treatment of the SA-CBF stages, equations, figures, data
generation for computer simulation and complex data simulations.

4.1. The Split-Aperture Conventional Beamforming Algorithm

The SA-CBF algorithm is designed to work in the frequency domain. After an FFT converts
the incoming data to the frequency domain, all the data processing is executed in the frequency
domain until the post-processing stage. The computational cost of the FFT and the inverse FFT
does not outweigh the advantages gained by using frequency-domain processing.

The nodes comprising the complete sonar array are logically divided into two sub-arrays.
Each sub-array performs conventional frequency-domain beamforming using replica vectors on
its own data independently. The two sub-array beamforming outputs are cross-correlated to
detect the time delay of the signal for each steering angle. This cross-correlated data, with
knowledge of the steering angles and several other parameters, will map to the final beamforming
output. The individual steps of the overall process, shown in Figure 4.1, are explained in greater
detail within the following subsections and Appendix C.

51

steering angle
replica vectors

sub-array 1 „

Fast Fourier
Transform

frequency
domain

beamforming

cross-
correlation

mapping
process

frequency
domain

beamforming multi-channel
signal

St jb-array 2 t
steering angle
replica vectors

Figure 4.1 - Block Diagram for the Split-Aperture Conventional Beamforming Algorithm

The first stage in the above figure is the Fourier transform stage. If cross-correlation is
implemented in the frequency domain without performing a sufficiently long EFT, an undesirable
wrap-around effect will occur. This effect is a circular action that contaminates the original
output of the correlation. To avoid the wrap-around effect in the cross-correlation stage, the input
data needs to be zero-padded before the signal is passed to the FFT. The number of zeros
depends on the length of the input data.

With lengthy FFT sets, the computational cost of the algorithm severely increases. There are
two methods that can be employed in the FFT stage to reduce this side effect. One is frequency-
bin averaging, and the other is ignoring the wrap-around effect.

The second stage is frequency-domain beamforming in SA-CBF, which is basically the same
as single-aperture frequency-domain beamforming except the phase centers of each sub-array are
considered. In this stage, the plane wave replica vector multiplies with the input transformed
data; hence, the input data of the node is steered to the specific direction in relation to the phase
center. The phase center is the reference point used to calculate the cross-correlation.

Unlike the single-aperture beamforming algorithm, the split-aperture algorithm does not need
to steer at every individual desired angle. The cross-correlation causes some redundant
information between the adjacent steering angles so each angle generates a range of the time
delay plot.

The third stage is the cross-correlation stage. Cross-correlation is used to detect the time
delay between the two phase centers. The maximum peak of the cross-correlation indicates the
time delay of the two beamformer outputs.

We are only interested in the small number of angles or time delays in the cross-correlation
adjacent to the beamforming angle of the sub-array since sub-array nodes are already steered to
the specific direction. Beyond this range of angles, the cross-correlation is not correct so that
portion of the cross-correlation must be eliminated from the final output to maintain correctness.

Before the inverse FFT is applied to obtain the cross-correlation as function of time delay, the
Smoothed Coherent Transform (SCOT) is performed for more distinct shaping of the cross-
correlation. Fundamentally, SCOT sets the magnitude portion of the cross-correlation in the
frequency domain to 1. This procedure results in a better resolution in the output plot because a

52

wide bandwidth in the frequency domain corresponds to a shaper image in the time domain. This
spectral whitening is accomplished either by taking the instantaneous magnitude of the cross-
correlation in frequency or a running average of the magnitude, which is calculated with the
previous magnitude of the data. Sometimes, a spectral window is used to acquire the smooth
beamforming plot.

Finally, a normalizing factor, which is the integral of the magnitude coherence, is used. This
factor divides the SCOT result and ensures a normalized function with magnitude less than unity
in time domain.

The fourth and final stage involves mapping the cross-correlations to the output. There are
two methods of mapping the two cross-correlations to the final output correlation. The first
method is to apply the weight function to the individual beam correlations with some overlap of
neighbor correlations, and then add up all the cross-correlation values time-by-time. The weight
function center is placed at the steering angle of the sub-array so that we take only the accurate
values from each correlation. The other method is x-interpolation, which involves taking only a
range of cross-correlation values and then working with raised-cosine weights to figure out the
interpolated angle from the two adjacent steered angles. In this case, only some range of cross-
correlation values are required to calculate the final beamforming plot. For the output angle, two
correlation functions will be evaluated in the closest beam pair

4.2. Computer Simulation

In this section, the split-aperture conventional beamforming algorithm is demonstrated
graphically. Figure 4.2 shows the flowchart of the SA-CBF based on matrix operations.

53

Generate Data Matrix
D

(N-by-M)

Take FFT
S = FFT(D)

(F-by-M)

Generate replica vectors for
each angle

rep
(0.5M-by-F)

Subarray beamforming for each angle

S1 (F-by-0.5M) nf> <0.5M-by-F) B1 (F-ty-1)

Beamforming Is performed by vector
multiply with each correspond color
vectors.
e.g. S1's white row vector X rep's white
column vector = B1's white value

Subarray beamforming for each angle

S2 {F-bf-0.SU) r»p (0.5M*y-F) B2(F-by-1)

Beamforming is performed by vector
multiply with each correspond color
vectors.
e.g. S2's white row vector X rep's white
column vector = B2's white value

Generate replica vectors for]
each angle

rep
(O.SM-by-F)

Calculate Crosscorrelation
C = B1 X con|ugate(B2)

for each angle

SCOT and normalize
for each angle

Inverse FFT "by hand"
for each angle

Interpolation

final plot

Figure 4.2 - Flowchart of the SA-CBF. M: number of nodes, N: number of samples and F: number of
frequency bins

We first specify the array geometry and signal processing parameters. The geometry
topology used in this simulation is the uniform linear array of nodes, which means the nodes are
located with equal distance from each other. The reader is referred to Appendix C for parameters
used in this simulation.

4.2.1. Intermediate Data Products.

According to Figure 4.2, there are several stages between generating the data and obtaining
the final plot. By looking at the intermediate results of the SA-CBF, we can observe how the
algorithm works and analyze it more easily. In the following examples of intermediate results,
we are looking in the 47.8° direction. Figure 4.3 shows the results of each sub-array's beamform
in that direction and of the cross-correlation between sub-arrays. The outputs of the sub-array
beamformers keep the shape of the input signal, and the magnitude of the output is maximum
because the signal is arriving from the steering direction. The cross-correlation of these two
beamformer outputs detects the exact time difference between the two plots for sub-array results.
However, we need only some range of time delay that unifies the sub-arrays (indicated by the
arrow) mapped to the composite output display.

54

1.5

f 1
I 0.5

0

1.5

f 1

| 0.5

I
0

50 100 150 200 250
«me

50 100 150 200 250
«me

1 £

«wm mrv

(a) (b)

50 100 150 200 250
lime

(c)

Figure 4.3 - Steered to the data incoming angle (47.8°); (a) subarrayl beamforming output; (b) subarray2
beamforming output; and (c) cross-correlation without SCOT and normalization.

If we consider another angle like -90°, Figure 4.4 will result. There is less power and
magnitude in the sub-array beamformer outputs. Also, the shape is not same as the input signal.
The correlation output does not have a prominent value, so it is hard to detect the time delay of
the two sub-arrays for the signal. The arrow points to the range of the values that are mapped to
the final output plot.

I

i

1

JLliL
i "^w^b irff WnM^

i<
J-

50 100 150 200 250 50 100 150 200 250 50 100 150 200 250

(a) (b) (c)

Figure 4.4 - Steered to the -9(f (data angle is 47.8°): (a) subarrayl beamforming output; (b) subarray2
beamforming output; and (c) cross-correlation without SCOT and normalization.

In the next stage, SCOT and normalization is used. The normalization assists in drawing an
independent plot for signal power. No matter how much signal power is delivered to the system,
the final plot will stay with same maximum value. It is only sensitive to the direction of the
incoming signal and noise. The normalized cross-correlation is plotted in Figure 4.5a and the
normalized SCOT is plotted in Figure 4.5b. Notice the relative ease with which the time delay
can be determined from the normalized SCOT plot. Also note that the SA-CBF output has more
contrast with SCOT (as seen from the reduction of the peak pointed to by the arrow).

55

100

1

0.8

0.6

I 0.4

jo.2

0

-0.2

-0.4

E~TT"'.—' r^~

20 40 60
time

(b)

80 100

Figure 4.5 - Effect of SCOT and Normalization: (a) Figure 4.4c redone with normalization and (b) Figure
4.4c redone with SCOT and normalization.

The final SA-CBF output is shown in Figure 4.6 below with 3 output angles for every (sub-
array) steering angle.

0.8

0.6

. 0.4
S

i 0.2

0

-0.2

-0.4

-0.6

"^"^ir^y ^
0

sin(1heta)

(b)

Figure 4.6- SA-CBF output with 15 sub-array steering angles and 57 output angles: (a) with linear
interpolation and (b) with r-interpolation.

4.3. Performance Analysis

The performance of a beamforming algorithm can be determined in several ways (depending
on the desired viewpoint). All of the performance factors are related to each other in some sense,
so it is difficult to find out the optimal trade-off point. If we think about the implementation of
the beamforming algorithm, the choice of the parameters is more complex. In this section of the
paper, we compare the major performance factors between the SA-CBF and CBF.

4.3.1. SA-CBF vs. CBF

The conventional beamforming (CBF) algorithm is simply represented by the delay-and-sum
model, which can be implemented in either the time domain or the frequency domain. The major
difference between the single-aperture, delay-and-sum CBF and the split-aperture CBF is that

56

CBF has one phase center and SA-CBF has two phase centers. CBF attempts to add up the
signals from all nodes to match one phase center via some delays, but SA-CBF splits the input
signal into two parts via beamforming with two phase centers separately and then cross-correlates
the beamformed signals.

For the sake of argument, we will consider in the comparison only the parameters for
resolution and steering angle. It is obvious that more steering angles correspond to higher
resolution but also higher computational cost. For the same number of steering angles, the SA-
CBF has better resolution (see Figure 4.6b) than CBF because the SA-CBF is using some
additional information at the cross-correlation stage. The visual resolution of the CBF can be
increased by linear interpolation, but this is not real resolution. SA-CBF increases the real
resolution by steering the two sub-arrays at the cross-correlation stage (see Figure C.3). The T-
interpolation technique helps to increase the number of output steering directions by interpolating
values near the sub-array steering angles (which are the angles for which cross-correlation is
exact and needs no interpolation).

4.3.2. Parallel Decompositions of SA-CBF

Decomposing the SA-CBF is a non-trivial task, not because of a limited degree of parallelism
(DOP) but rather because of the many possibilities available for parallelizing the algorithm. The
reason for the increased DOP is simply the increase in complexity of the SA-CBF algorithm.
Figure 4.7 below shows the many added stages of SA-CBF along with a few proposed
decompositions.

The plot on the left shows two techniques that have already been employed for conventional
time and frequency-domain beamformers: that is, iteration decomposition and steering
decomposition. Iteration decomposition is a coarse-grained algorithm that is a control-parallel
approach. The advantages of this method are efficiency and a straightforward approach (which
yields well to fault-tolerance). However, as is the case with the coarse-grain full-capability
algorithm (described in Section 3), an iteration-parallel program is more likely to yield the
longest latency for data from a particular iteration. Parallelism is achieved through pipelining.

Figure 4.7(a) also shows steering or angle decomposition. Steering decomposition is a data-
parallel approach in which any one beamforming iteration is partitioned by steering angle and
then accumulated into one solution in the end. Note, however, that because the angle-
decomposition loop only affects a portion of the flowchart, a modular algorithm may be
employed with angle decomposition as one of the modules. The portion of the flowchart outside
this module is sequential code. By modularizing, these sequential bottlenecks may be
parallelized independently of the parallelization implemented for the steering-angle calculation.

The decomposition technique shown in Figure 4.7(b) is a fully modularized fine-grained
algorithm. This diagram shows the different modules and differentiates the type of parallelism
employed in each. This fine-grained model is likely to yield the lowest result latency, but a
coarse-grained model is likely to yield the best speedup. Low result latency is due to the data-
parallel approach, in which many nodes split up the task. Whereas, in control parallelism, tasks
remain intact and parallelism is achieved across multiple tasks. Thus, individual tasks do not
finish as fast as tasks in the data-parallel approach.

57

Coarse- and Medium-Grained
Decompositions of the SA-CBF

Conventional
Beamform

Data
Parallel

Conventional
Beamform

Cross-

Correlation

-M->
IIIM 1 I I I A

IHJNF frmrilF

SCOT/
Normalization

Angle Decomposition
Medium-Grained Parallel

LHiN

Iteration Decomposition
Coarse-Grained Parallel

Interpolate/
Reduce

&

<-<b->
111 ITM 11

Multi-Stage Fine-Grained SA-CBF

ffl5 t
Parallel

Beamform

Data
Parallel

Parallel
Beamfofm

<-d)-*-
■ t

Cross-
Correlation

HHfff ¥'

Control
Parallel

(Pipelined)

SCOT/
Normalization

as
:GpNT

Data
Parallel

Frequency Bin
Decomposition

Fine-Grained Parallel

Control
Parallel

(Pipelined)

Interpolate/
Reduce

£&

(a) (b)

Figure 4.7 - Decompositions of the SA-CBF Algorithm.

4.4. ABF Description

So far, we have described the SA-CBF algorithm. CBF is a technique for localizing a target
in a reasonably quite environment. The problem with CBF is that the beamformer output is
sensitive to the environment and the noise. Even if we apply a shading coefficient to each node,
the beamformer still contains side lobes (for directions other than the desired steering direction)
in the beam pattern as shown in Figure 4.8. When a strong signal comes from the direction of a
side lobe, this unwanted signal power contributes to the beamformer output. It is impossible to
remove all the side lobes of the beam pattern. We can reduce the size of side lobes or sharpen the
main lobe by applying different windows to the nodes.

58

-80 -60 -40 -20 0 20
direction an^e

Figure 4.8 - Beam pattern of the SA-CBF with a uniform shading (no window applied)

Adaptive beamforming (ABF) takes into account the location of the nulls in the beam pattern
and attempts to steer them at any unwanted noise. The replica vectors are manipulated in such a
way that the background noise is minimized; therefore, nulls are steered at as many strong noise
targets as possible. If the background noise during the experiment is about the same as during the
time just prior to the experiment, then we can have a higher signal to noise ratio because the cost
function or the performance surface of the signal keep the same shape, and the adaptive
algorithms can easily find the optimal value of the coefficient. Otherwise, the information about
the signal and background noise should be updated to calculate the new coefficient.

A problem in the ABF is that when strong background noise is located nearby the target
direction, the ABF will steer nulls at the target, effectively making the target disappear. To avoid
this problem, we need to be able to distinguish between the background noise and the desired
signal by some method. One of the techniques is to give the beamformer some characteristics
from both CBF and ABF. By placing in the system some parameter that controls the relative ratio
of CBF use to ABF use, the beamformer can take advantage of both worlds.

ABF uses the Cross Spectral density Matrix (CSM) for calculating the optimal coefficients.
CSM is defined as, R = E[XX * J, where X is the vector of the Fourier components near some
frequency from each node. Therefore, the size of the CSM should be M by M, where M is the
number of nodes. The fact that the CSM is calculated for each frequency bin (or frequency
range) means that there exists a third dimension (frequency) of the matrix.

The output power spectral density of the conventional beamformer is given in Equation 4.1,
where v is the normalized replica vector for the specific frequency.

BF = -±-E[vX] = ^-E[(v*X)(X'v)] = -±-v'E[XX']v = —v'Rv
A/ A/ A/ Af

Equation 4.1

The purpose of the ABF is to minimize this output power of the beamformer with some
constraint function. This constraint function specifies that the beam pattern must not attenuate in
the desired direction, but there is freedom in the choice of the null positions. The constraint
function and the cost function to minimize are given in Equation 4.2, where w is the optimal
weight for the ABF.

59

w v = v w = 1 (constraint function), BF = w Rw (cost function)

Equation 4.2

The weight vector, w, can be derived by using Lagrange Multipliers, which minimize the cost
function within the constraint. The result of the Lagrange Multiplier is shown in Equation 4.3.

R~lv
w = ———

vR-\

Equation 4.3

To implement SA-ABF, the above calculated w coefficients are used instead of the original
replica vectors.

Calculation of the CSM and inverse of the CSM are very computationally intensive, so it is
desirable to reduce the computational cost by averaging and interpolating the frequency bins.
The frequency averaging between adjacent bins may lose some signal information, so we need to
find a compromise between resolution and computational cost. Figure 4.9 shows the procedure
for finding the ABF coefficients using the frequency-averaging technique.

frequency

averaging Generate
Cross-

Spectral
density

Matrix
(CSM)

FFTed Input

signal; X
frequency

averaged X

m

Linear
interpolation

Optimal wsight; w (Iraq, ave.) Interpolated
optimal wsight; w

m: node index number
f: original frequency bin number
g: averaged frequency bin number

Frequency averaged replica

vectors; v

Figure 4.9- Diagram for the ABF weight with frequency averaging.

Figure 4.2 can be redrawn (Figure 4.10 below) to represent the SA-ABF algorithm. Notice
that the operations in Figure 4.9 are the operations that occur at the weight-generation stage in
Figure 4.10.

60

Generate Data Matrix
D

(N-by-M)

T

Take FFT
S = FFT(D)

(F-by-M)

i i' '' '
Generate ABF weight

(or each angle

Sub-array beamforming
B1

for each angle

Sub-array beamforming
B2

lor each angle

Generate ABF weight
for each angle

. .v.. i'

Calculate Cross-correlation
C = B1 X conjugate(B2)

for each angle

i ■

SCOT and normalization
for each angle

i'

Inverse FFT "by hand"
lor each angle

i'

Interpolation
and mapping

final plot

Figure 4.10 - Flowchart for SA-ABF. M: number of nodes, N: number of samples, and F: number
of frequency bins.

Whenever we have a new data set, the inverse of the CSM (named matrix R) is calculated for
the ABF coefficients. Certain matrix techniques to calculate the inverse matrix are available,
such as singular-value decomposition. ABF is only interested in reducing energy from strong
interference; therefore, an estimate of R is built using only the first strongest eigenvalues. We
add a small amount of white noise identity matrix to make the reduced-dimension matrix full
rank. The inverse of the estimated R can be calculated with less computation.

As mentioned earlier, the SA-CBF will perform better than SA-ABF in situations in which
nulls are steered toward noise near targets. The ABF weight computation can be modified (in
Equation 4.4) to allow control over this situation.

w =
(R+eiy'v

v\R+£l)Av

Equation 4.4

Here, / is the identity matrix and £ is a parameter that we are free to choose to match the
conditions. We can choose £ automatically by finding out the relationship between the white
noise gain and £ . To show how the £ parameter affects the w weights, consider some extreme
cases. For £ =0, we have the (strictly) ABF result from above. When £ is large, the R matrix is
overshadowed by scaled identity matrix, so the weight vector w is equal to the steering vector v.
This situation results in SA-CBF.

61

4.5. Conclusions

The advanced beamforming techniques described in this chapter present new challenges and
opportunities for the distributed parallel sonar array. These algorithms provide to the sonar array
considerably more computational work than the strictly conventional beamformers. Nonetheless,
plans have been laid out for the parallelization of these algorithms in the future. In fact, previous
work in parallelizing the single-aperture conventional beamformers will be used extensively in
the parallelization of the more advanced versions. This previous work will be taken advantage of
by using a modularization approach to the decomposition of the algorithm. With this approach, a
fair portion of the parallelization work is already completed. New work will revolve around
parallelizing new computations, including the cross-correlation (for the split-aperture algorithm)
and the matrix manipulations (in the adaptive algorithm). With the additional capabilities of
these algorithms over those of the conventional, single-aperture programs, the DPSA will be able
to provide both autonomous performance and high-fidelity beamforming results.

62

5. Prototype Hardware Architecture
Modeling and simulation have proven to be valuable tools in analyzing and predicting the

behavior of computer systems. However, a model can only be as accurate as the assumptions
used to construct it. To demonstrate the feasibility of the algorithms being developed, a prototype
hardware testbed must be constructed. This testbed should resemble the conceptual architecture
as closely as possible while remaining within the time and cost budgets. This section describes
the reasoning behind the final hardware selection to be used in construction of the prototype
system. Descriptions are given of the processor architecture, the interconnection scheme, and the
software development tools that will be used.

5.1. Prototype Hardware Considerations

Several issues play a key role in the development of an efficient and effective sonar array
architecture. One of the primary requirements considered for improved mission time and reduced
cost is low-power hardware that yields high-performance levels without sacrificing design
accuracy and reliability. Advancements in low-power technology, due to increased demand for
smaller, faster electronic devices, made the search for prototype hardware challenging. Now that
more low-power hardware is available than in the past, selection of high-performance prototype
hardware has become a matter of choosing hardware based on other factors in addition to low
power consumption. Other technical issues considered in the development of a prototype array
include microprocessor speed, memory capacity, communications protocol, and cost. To meet
the mathematical processing demands of beamforming algorithms, the chosen architecture must
have sufficient processing power and speed. Consequently, digital signal processing (DSP)
architectures were considered for use in the prototype hardware.

Digital signal processors (DSPs) are special-purpose processors that differ from general-
purpose processors in that they can deal with large amounts of data in real time by repeating
simple operations. Real-time performance requires predictable operation, so DSPs have large
amounts of on-chip memory with constant access times, as opposed to cache that has
unpredictable performance. Most DSPs are equipped with dual-access on-chip memory that
allows two operands to be loaded in a single instruction cycle. This feature is critical for faster
implementation of filters and other arithmetic operations, which require two memory operands to
perform each multiply-accumulate (MAC) operation. Parallelism further enhances this feature
through the use of separate program and data memory spaces, thus allowing simultaneous access
to program instructions and data and increasing bus bandwidth.

DSP architectures are optimized for computationally-intensive algorithms that often require
repetitive FFT calculations, as do many beamforming algorithms. For this reason, they
incorporate multiplier units that perform MAC operations in a single instruction cycle. Simple
repetitive loops are handled by repeat mechanisms that execute a single instruction or a block of
instructions for a predetermined number of times.

Although DSP microprocessors, in the context presented above, may seem to be the most
optimal architecture for implementing sonar arrays, general-purpose microprocessors, complete
with development boards and starter kits, were also considered for use as node components in the
hardware prototype. A feasibility study was conducted to determine suitable architectures that
will support the high-performance, fault-tolerant network topology for the prototype. After
careful analysis, the Texas Instruments C542 DSP chip was the optimal candidate for each node
in the sonar array. The C542 is featured on the Texas Instruments DSKplus Starter Kit
development board (DSKplus). Since the DSKplus has several other features that support the
hardware performance characteristics needed by software simulations, the DSKplus was,

63

ultimately, chosen for each node in the prototype hardware. A myriad of technical support, as
well as hardware availability and flexibility, also prompted this choice for the sonar array
prototype development.

5.2. Prototype Processor and Basic Node Architecture

The Texas Instruments DSP Starter Kit (DSKplus) development board has several features
that can address some of the technical challenges of a network-based multicomputer system for
large sonar arrays. The DSKplus is a low-cost, high-performance prototyping tool that features
the 16-bit fixed-point TMS320C542 DSP chip. The TMS320C54x family of DSPs is so detailed
that a separate discussion on its features and characteristics is warranted. A functional overview
highlighting some of the practical features of the DSKplus are also discussed, as well as a
description of some hardware connections that will be used when implementing the network
configuration of the sonar array.

5.2.1. Overview of the Node Processor

There are several characteristics of the Texas Instruments TMS320C54x family of DSPs that
contribute to high performance levels, as illustrated by the functional diagram in Figure 5.1.
Although only the TMS320C542 chip is featured on the DSKplus, it is appropriate to give a
general overview of this family of DSPs since the main distinction between individual members
of the family lies in on-chip memory organization and peripherals. The TI TMS320C54x DSPs
(C54s) are 16-bit fixed-point processors that use an advanced derivation of the Harvard-style bus
architecture. In conjunction with this standard, there are three separate 16-bit data memory buses
and one 16-bit program memory bus in this architecture that contribute to fast data and program
memory access times. The program bus (PB) delivers the instruction codes and immediate value
operands from the program memory to their appropriate destinations. The three data buses,
named CB, DB, and EB, provide connections to on-chip devices such as the CPU, data memory,
and the program address generation logic unit (PAGEN). This style of architecture allows for
simultaneous access to program instructions and data memory, thus allowing the use of C54s with
Dual-Access On-Chip Random Access Memory (DARAM).

The internal memory structure of the C54 is classified into three different memory spaces:
program (64K Words), data (64K Words), and I/O (64K Words). C54 devices contain DARAM
and/or single-access RAM (SARAM), as well as on-chip read-only memory (ROM). Each C54
device contains different DARAM and SARAM configurations depending on its specific
optimizations. It is important to note that the C542 chip has 10K words of on-chip DARAM and
2K words of ROM. The memory structure also includes 26 CPU and peripheral registers that are
mapped to the data memory address space.

Another important feature is the CPU, which contains a 40-bit arithmetic logic unit (ALU), a
40-bit barrel shifter, and two 40-bit accumulators named A and B. The CPU also contains a 17 x
17-bit multiplier; a 40-bit adder; and a compare, select, and store unit (CSSU). There are two
address generation units included in the CPU: the data address generation unit (DAGEN) which
contains several pointers and register, and the PAGEN mentioned previously that houses counters
such as the program counter. The functional units in the CPU incorporate a high degree of
parallelism, which results in fast execution of mathematical operations. This feature
demonstrates the significance of using DSP architectures to exploit single-cycle, computationally-
intensive instruction executions that are needed for high-performance implementations of
beamforming algorithms. There are numerous other features and on-chip peripherals that
enhance the performance of C54s. They include:

64

Software-programmable Wait-State Generator and Programmable Bank Switching
On-chip PLL (Phase Locked Loop) clock generator with internal oscillator or external clock
source
Time-Division Multiplexed (TDM) serial ports that allow simultaneous access to multiple
devices
8-bit parallel host port interface (HPI)
Power Consumption Control instructions with Power-Down modes
20-ns and 25-ns Single-Cycle Fixed-point instruction execution time for a 3-Volt Power
Supply

System Control
Interface Program Address Generation (PAGEN) Logic

0
PAB I

PB

PC
BRC, RC, RSA, REA
IPTR

.. n it

CAB

CB

DAB |

ARAUO, ARAU1

AR0-AR7
SP, BK, DP, ARP

Data Address Generation (DAGEN) Logic

DB |

EAB I

\ MUX /

TREG
Register

M

XE

i i r+>
\ SgnClr / \ Sign

EXP Encoder

,. ,,

7
Multiplier (17X17)

Fractional \

ACCA(40)

TZI

ill
MUX 7

ACCB(40)

/ MUX

ffll

\ Adder(40) /

ZERO SAT

\

\

♦ VTT 1MMMI

SignCti SgnCtr

ALU(40)

X

Memory &
External Interfaces

o
o

Peripheral
Interface

SlgnCtr 7
Barrel SWer

MUX 7
COMP

Transitor
Register

Mo«
Significant
Wud/Lml

Significwil
Woid S^Ktor

Test/Control
Rag

Figure 5.1 - A functional diagram of the TI TMS320C54x Architecture illustrating multiple functional units
[TMS97A].

65

5.2.2. Functional Overview of the Development Board

The numerous features of the C542 chip described establish the desire to use the DSKplus as
a basis for the prototype hardware. The DSKplus is a development board that includes other
system components that can be used in conjunction with the C542 to produce an optimal
prototype architecture. This functional overview of the DSKplus should illustrate some of the
reasons why it is one of the most powerful development boards available on the current market,
and consequently, a strong contributing factor in its use in the prototype architecture.

As previously mentioned, the DSKplus features the C542 chip that can support the
implementation of most real-time DSP algorithms. A board diagram of the DSKplus is shown in
Figure 5.2. To adequately meet the algorithmic demands, as well as appropriate hardware and
software specifications for conventional and parallel beamforming, the DSKplus also features
[TMS96]:

• 14-bit linear resolution programmable ADC/DAC interface circuit for analog-to-
digital/digital-to-analog signal conversions,

• buffered serial port (BSP),

• host port-interface (HPI),

• socketed programmable array logic device, PAL22V10, used for reconfiguration of the
host port interface for customized designs,

• I/O expansion bus and control signals for external customized designs,

• standard 1/8-inch mono mini-jacks for analog I/O,

• XDS510 emulator header, and

• time-division multiplexed (TDM) serial port header.

66

SttntorAW
nänä-jäiüti *,<x a««t

tetuded

WSmclMttlpMßSP) XDSStO
3ft* he« pan fttoftice (H«! »mubsw

■ eeMfo! f&ivt port
PEEE1U9J •iindml)

4«tvt uniar<re6«»»l
piine«t pott w«wet»iy,

«naBoa h$h toe«)
8»5«!<Srt5

Figure 5.2 - A Board Diagram ofDSKplus detailing the components on the board [TMS96].

5.3. Prototype System Configuration

The hardware prototype will consist of eight DSKplus boards physically stacked upon one
another, via standoffs. A DB-25 cable is connected between the host PC and one board at a time
for downloading the assembled programs. The boards are connected to each other through a
daisy-chain configuration where two ribbon cables (one connected to the JP1 TDM header and
the other connected to the JP2 emulator header) will be tapped with socket connectors to connect
to the male headers on the boards. The male headers are to be constructed and soldered onto the
expansion slots on the DSK boards. The ribbon cables will be custom built.

The XDS510 Emulator is an ISA card that is installed into the host PC. The JTAG cable is
connected from the XDS510 and buffered before connecting to the first DSK board. Figure 5.3
shows this configuration. The analog interfaces of the DSK boards are not used at this time
because the time-series input data will already be written to memory.

The host computer will contain all the software necessary to write, simulate, debug, and test
the code for the prototype. This suite includes but is not limited to the optimizing C compiler,
Code Explorer, Parallel Debugger Manager, emulation software, etc.

67

u

"E
(0 o

DSKPIua.
Boards

n^f^v

nr

^r

^LC

n

n

H 8-bit
' bidirectional

printer port
connector

±
\
XDS510
Emulator

Port

JTAG Cable LG Cable

Buffer Parallel Printer Cable

Host
Computer
System

Figure 5.3 - Prototype System Configuration

5.4. Testing and Simulation Environment

Texas Instruments provides a variety of software and hardware tools to code, simulate, and
debug DSP applications. Some of these components have already been described as part of the
system configuration. The entire suite is described here for completeness. The debugging and
simulation tools include the following:

1. DSKplus boards: Hardware interface to the C542 chip. Provides easy communication
with host PC and XDS510 Emulator.

2. C Source Debugger: DOS based debugger that allows the user to debug programs in C,
assembly, or both.

3. Code Explorer: Windows based simulator that allows the user to view disassembled code
in either mnemonic or algebraic instruction set, view memory locations, registers, and a
graphical display of data. Communicates with single DSK board through a parallel port.
Includes algebraic assembler.

68

4. XDS510 Emulator: ISA plug-in card that communicates with multiple DSK boards
through the JP2 header and JTAG cable. Provides access to on-chip analysis module that
lets the user work with pseudoregisters, count occurrences of hardware events, and set
hardware breakpoints.

5. Parallel Debug Manager (PDM): Interface that allows parallel debugging of code.
Multiple debugging screens, one for each processor, are active at the same time.

6. Optimizing C Compiler: Translates ANSI C code to mnemonic assembly code using
optimizations specific to C54x devices. Also includes assembler, linker, archiver, and
mnemonic-to-algebraic converter.

The assembly language tools work on two different types of instruction sets, the mnemonic
instruction set and the algebraic instruction set. The mnemonic instruction set is the conventional
type where assembly instructions consist of the instruction mnemonic followed by its operands.
The algebraic instruction set is an equation-oriented approach where the operations are written as
mathematical equations [TMS97A].

Figure 5.4 below shows the steps taken in developing software for the prototype. The first
step is to write the C code for each processor. The code will generally be the same except that the
processors will work on different data. The optimizing C compiler will be used to generate the
mnemonic assembly code.

The mnemonic assembly source file generated by the compiler is assembled using the
mnemonic assembler and converted to algebraic assembly code using the mnemonic-to-algebraic
converter. The algebraic assembly code is then assembled using the algebraic assembler. The
assemblers generate a Common Object File Format (COFF) file that is used to create an
executable by the linker [TMS97C]. The executable is finally loaded to the DSK board through
the parallel port.

69

Figure 5.4 - DSP Software Development Steps [TMS97C]

5.4.1. In-circuit Emulator and Debugging Tool

The in-circuit emulator is the XDS510 and is coupled with the parallel debugging manager
(PDM). The emulator permits direct control over the processor in the DSK board and gives a
good perspective of processor internal operations. It communicates with the DSK boards using a
JTAG scanner. The emulator's analysis interface monitors the processor buses and extracts bus
cycle information in real time. The emulator can count events such as bus accesses, instruction
fetches, CPU clock cycles, and other operations. It can also halt the processor using hardware
breakpoints at events such as bus accesses, interrupts, calls/branches taken, and several other
events. The debugger provides access to all the processor registers and accumulators, memory,
and pipeline pseudoregisters that behave as storage registers between pipeline stages [TMS97B].

Before the JTAG cable is connected to the first board, certain signals have to be buffered.
These signals are the processor TMS, TDI, TDO, and TCK signals. The buffering helps control
the timing skew when driving multiple processors. A resistor value of 4.7kß should be used to

70

pull up the TMS, TDI, and TCK signals to the positive voltage rail in order to hold these signals
high when the emulator is not connected. The emulation signals, EMUO and EMU1, should also
be buffered to isolate the processors from the emulator and to properly drive the multiprocessing
system [JTAG94].

The PDM allows the user to send commands to multiple processors. Individual processors
and groups of processors must be assigned names through a configuration file. The naming of the
individual processors associates each individual debugger on the screen with a processor. The
debugger provides simultaneous debugging of C and assembly code, interactive data displays,
and an easy-to-use interface that facilitates debugging of all eight processors [TMS94].

The debugging environment described above provides all the information needed to easily
debug the operations of all eight processors and provides sufficient data for performance analysis.
The data being transmitted through the TDM port can be monitored in real time. Throughput and
latency measurements can be made through accurate timing analysis.

5.5. Conclusion

The hardware prototype is being developed using the TMS320C542 DSP from Texas
Instruments as the node processor. The prototype consists of eight processors that will execute
the frequency-domain and split-aperture algorithms in parallel while communicating with each
other via their TDM ports. This small-scale distributed, parallel array will serve to help analyze
issues such as computational speed, communications requirements, robustness, and cost-
effectiveness. The choice of the C542 as the prototype node processor was based on practical
considerations like low-power operation, weight, size, precision, and computational capability.

System implementation will be simplified by the variety of development tools that 77
provides. The optimizing C compiler, in-circuit emulator, and parallel debugging manager will
be used to develop and debug the system software including the communication implementation.

71

Conclusions
In the second phase of this project, tasks have extended the study, design, and analysis of the

major components in the design and analysis of parallel and distributed computing architectures
and algorithms for fault-tolerant sonar arrays. These components include the network
architecture, the node processor, and the beamforming algorithm. Furthermore, a robust
simulation engine for such systems has been developed. Research has also begun on advanced
algorithms for autonomous sonar arrays, including a split-aperture correlational method and
adaptive signal processing. The work carried out in this second phase has paved the way for the
rapid virtual prototyping of the system and for future developments in parallel beamforming.

The accomplishments for this second phase can be summarized in terms of five research
thrusts. First, the components for a laboratory testbed for distributed multicomputer sonar arrays
has been acquired and studied. Second, a survey of advanced beamforming algorithms for future
use on autonomous sonar arrays has been made. This survey will lead to development of parallel
code for such advanced beamformers. Third, the algorithms created during the first year were
examined more closely and are now fully understood as far as computation and communication
requirements are concerned. Fourth, a robust, fine-grain system simulator based upon the fine-
grain network models and parallel algorithms developed in the first phase has been created and
exploited. Last, work has begun in studying the fault-tolerant requirements of the DPSA. This
work includes hardware bypasses, system software robustness, and beamform algorithm
adaptivity.

The prototype development work has led to the acquisition of the hardware components
required to build the strawman autonomous sonar array. Extensive study of the internal working
of the CPU and the commercial interconnection scheme has been made. These studies will be
used in the coming year to create a message-passing software system on the 8-node prototype to
run any of the parallel beamformers developed for this project.

The basic structure for the Integrated Simulation Environment was completed during this
year. The ISE has provided invaluable results, via its rapid virtual prototyping capability, for use
in comparing architectures and algorithms for use on the DPSA. The ISE has provided
information on beamformer performance when a wide range of network speeds and processor
speeds are used. These parameters can be changed in much the same way (and at the same time)
as the granularity knobs in the parallel beamforming algorithms to create a wide range of
scenarios. With this information, several conclusions about the capabilities of different versions
of the algorithms over different architectural situations were made. A case in point is the
pipelined medium-grain beamformer which showed considerable promise on paper, yet did not
provide benefits enough (in most cases) to compensate for its additional complexity.

The conventional beamforming research has been completed in this year. The time-domain
beamforming algorithms developed last year that lagged in performance were this year
augmented. Still, the performance did not surpass that of the FFT beamformers. The important
GDS paradigm emerged form the time-domain work. This paradigm provides a level of
transparency above the hardware system to the beamform application. In addition to providing an
easier interface for the parallel beamformer programmer, the GDS system offers the possibility of
many fault-tolerant features. These features range from simple checks for node livelihood to
novel concepts in agenda parallelism. The FFT conventional beamforming work was completed
with the addition of category breakdowns and with the completion of coding of the algorithms in
the taxonomy. Furthermore, an alternative algorithm for the medium-grain program was created
to test the possibility of use a high degree of overlap of computation and communication. Results
in this research show that the coarse-grain full-capability algorithm slightly outperforms the

72

medium-grain full-capability algorithms. The medium-grain pipelined alternative shows slight
testbed improvement over its non-pipelined cousin. The unidirectional programs show very little
speedup over the baseline; thus, there is no reason to run either of the unidirectional algorithms
on the sonar array unless a unidirectional network is forced upon us.

Split-aperture and adaptive sonar array beamforming are the algorithms to parallelize for the
future. The first work in analyzing and coding a sequential, split-aperture beamformer was
completed in this year. In addition, parallelization of the algorithm is underway using knowledge
derived from the parallel conventional beamformers. Parallelization of the split-aperture
beamformer has the major advantage that the performance of the beamforming output can be
improved via the correlation, yet the cost of this improvement in a parallel version is less than the
cost in a sequential version. That is, stepping up to the split-aperture algorithm is more easily
achieved on autonomous sonar arrays when parallelism is employed.

The last major section of work in this year was the fault-tolerant research into both the
architectures and algorithms. The GDS system-level software technology developed in phase two
is of particular interest. Not only does it serve as a buffer between the beamforming program and
the underlying communications interconnect, but it also provides additional fault-tolerant
features. The GDS system provides the beamforming program with local access to the real-time
acoustic data so that coding of a data parallel program is much simpler to the traditional
sequential programmer. The system provides guaranteed delivery of control messages, is able to
track dead nodes and cut them out, and provides synchronization and padding of the several
columns of hydrophone data. The system can provide some self-healing to the beamforming
programs without the intervention or knowledge of those programs, making the GDS system a
robust mechanism for ensuring continued operation of the beamformer in normally damaging
situations. All these features will be invaluable to the final development of the DPS A.

The third phase of this project (which began in January of 1998) involves the development,
implementation, and demonstration of a small, laboratory-based hardware prototype with its own
distributed, parallel, and embedded software system. This system will be used to verify and
validate the simulation results, and in so doing demonstrate and better quantify the inherent
advantages of the novel approach employed in its design. Critical factors in the evaluation of the
system will center on quantitative measurements in the areas of performance and dependability,
including computational speed, efficiency, and precision, reliability, cost, weight, power, size,
and mission time, as well as qualitative measurements related to system flexibility, versatility,
expandability, scalability, etc.

73

Bibliography

Prototype Development

[JTAG94] Texas Instruments. "JTAG/MPSD Emulation Technical Reference." 1994.

[TMS97A] Texas Instruments. "TMS320C54x DSP Reference Set, Volume 1: CPU and Peripherals

Guide." 1997.

[TMS97B] Texas Instruments. "TMS320C54x Optimizing C Compiler User's Guide." 1997.

[TMS97C] Texas Instruments. "TMS320C54x Assembly Language Tools User's Guide." 1997.

[TMS96] Texas Instruments. "TMS320C54x DSKplus DSP Starter Kit User's Guide." 1996.

[TMS94] Texas Instruments. "TMS320C5xx C Source Debugger User's Guide." 1994.

Beamforming, General

[BIEN77] Bienvenu, G. "An Adaptive Approach to Underwater Passive Detection." Aspects of

Signal Processing, Part 1. Ed. G. Tacconi. Dordrecht, Holland: D. Reidel, 1977:

395-400.

[BURD91] Burdic, William S. Underwater Acoustic System Analysis. 2nd ed. New Jersey: Prentice

Hall, 1991.

[CAND94] Candy, J. V. and E. J. Sullivan. "Model-Based Processing for a Large Aperture Array."

IEEE Transactions on Oceanic Engineering 19.4 (Oct. 1994): 519-28.

[CHEN82] Chen, C. H. Digital Waveform Processing and Recognition. Boca Raton: CRC Press,

1982.

[CHEN88] Chen, C. H. ed. Signal Processing Handbook. New York: Marcel Dekker, 1988.

[CHIN94] Ching, P. C. and H. C. So. "Two Adaptive Algorithms for Multipath Time Delay

Estimation." IEEE Transactions on Oceanic Engineering 19.3 (Jul. 1994): 458-62.

74

[CR0C81] Crochiere, Ronald E. and Lawrence R. Rabiner. "Interpolation and Decimation of Digital

Signals - A Tutorial Review." Proceedings of the IEEE 69.3 (Mar. 1981): 300-31.

[DEFA88] DeFatta, David J., Joseph G. Lucas, and William S. Hodgkiss. Digital Signal

Processing: A System Design Approach. New York: Wiley, 1988.

[ERM094] Ermolaev, Victor T. and Alex B. Gershman. "Fast Algorithm for Minimum-Norm

Direction-of-Arrival Estimation." IEEE Transactions on Signal Processing 42.9 (Sep.

1994): 2389-93.

[FARR77] Farrier, D. R. and T. S. Durrani. "Signal Extraction Algorithms for Adaptive Processing

of Array Data." Aspects of Signal Processing Part 2. Ed. G. Tacconi. Dordrecht,

Holland: D. Reidell, 1977: 485-94.

[FUCH95] Fuchs, Jean-Jacques. "Shape Calibration for a Nominally Linear Equispaced Array."

IEEE Transactions on Signal Processing 43.10 (Oct. 1995): 2241-8.

[GERS95] Gershman, Alex B., Victor I. Turchin, and Vitaly A. Zverev. "Experimental Results of

Localization of Moving Underwater Signal by Adaptive Beamforming." IEEE

Transactions on Signal Processing 43.10, (Oct. 1995): 2249-57.

[GOODa] Goodwin, Michael, and Gary Elko. "Constant Beamwidth Beamforming Using an Affine

Phase Multi-Beamformer." Murray Hill, New Jersey: AT&T Bell Laboratories,

Acoustics Research Department.

http://ptolemy.eecs.berkeley.edu/~michaelg/constant.ps.

[GOODb] Goodwin, Michael. "Frequency-Independent Beamforming." Berkeley, CA: U of

Berkeley, EECS, and AT&T Bell Laboratories, Acoustics Research.

http://ptolemy.eecs.berkeley.edu/~michaelg/fib.ps.

[GORI] Goris, Malcolm J., and Donald J. Mclean. "Towed Array-Shape Estimation: A

Comparison of Methods." CSIRO, Division of Radiophysics.

http://www.rp.csiro.au/people/mgoris/papers/asecomp.ps.

[GRIF77] Griffiths, J. W. R., and J. E. Hudson. "An Introduction to Adaptive Processing in a

Passive Sonar System." Aspects of Signal Processing, Part 1. Ed. G. Tacconi.

Dordrecht, Holland: D. Reidel, 1977: 299-308.

75

[GRIF73] Griffiths, J. W. R., P. L. Stoklin, and C. van Schooneveld, eds. Signal Processing;

Proceedings. Academic Press: London, 1973.

[HAMP93] Hampson, Grant and Andrew P. Papliriski. "Beamforming by Interpolation." Technical

Report 93/12. Clayton, Victoria, Australia: Monash U, 1993.

ftp://ftp.rdt.monash.edu.aU/pub/techreports/RDT/93-12.ps.Z.

[HAMP95] Hampson, Grant and Andrew P. Papliiiski. "Simulation of Beamforming Techniques for

the Linear Array of Transducers." Technical Report 95/3. Clayton, Victoria, Australia:

Monash U, 1995. ftp://ftp.rdt.monash.edu.aU/pub/techreports/RDT/95-3.ps.Z .

[HAYK91] Haykin, Simon. Adaptive Filter Theory. 2nd ed. Englewood Cliffs: Prentice Hall, 1991.

[HAYK95] Haykin, Simon, ed. Advances in Spectrum Analysis and Array Processing Volume III.

Englewood Cliffs: Prentice Hall, 1995.

[HOLM] Holm, Sverre. "Digital Beamforming in Ultrasound Imaging." Oslo, Norway: U of Oslo,

Department of Informatics. ftp://ftp.ifi.uio.nO/pub/publications/others/SHolm-4.ps.Z.

[HORV92] Horvat, Dion C. M., John S. Bird, and Martie M. Goulding. 'True Time-Delay Bandpass

Beamforming." IEEE Transactions Oceanic Engineering 17.2 (Apr. 1992): 185-92.

[IFEA93] Ifeachor, Emmanuel C. Digital Signal Processing: A Practical Approach. Workingham,

England: Addison-Wesley, 1993.

[JOHN93] Johnson, Don H. and Dan E. Dudgeon. Array Signal Processing, Concepts and

Techniques. New Jersey: Prentice Hall, 1993.

[JOY97] Joy, Kenneth I. "Bresenham's Algorithm." Davis, CA: Visualization and Graphics

Research Laboratory, U. of California, Davis, 1997.

[LI95] Li, Shaolin and Terrence J. Sejnowski. "Adaptive Separation of Mixed Broad-Band

Sound Sources with Delays by a Beamforming Herault-Jutten Network." IEEE

Transactions on Oceanic Engineering 20.1 (Jan. 1995): 73-8.

[LUND77] Lunde, E. B. "The Forgotten Algorithm in Adaptive Beamforming." Aspects of Signal

Processing, Part 2. Ed. G. Tacconi. Dordrecht, Holland: D. Reidel, 1977: 411-21.

76

[MCWH89] McWhirter, J.G and T.J. Shepherd. "Systolic Array Processor for MVDR

Beamforming," IEE Proceedings 136.F2(Apr. 1989):75-80.

[MORG94] Morgan, Don. Practical DSP Modeling, Techniques, and Programming in C. New

York: Wiley, 1994.

[NIEL91] Nielsen, Richard O. Sonar Signal Processing. Boston: Artech House, 1991.

[NORD94] Nordebo, Sven, Ingvar Claesson, and Sven Nordholm. "Adaptive Beamforming: Spatial

Filter Designed Blocking Matrix." IEEE Transactions on Oceanic Engineering 19.4

(Oct. 1994): 583-9.

[PILL89] Pillai, Unnikrishna S. Array Signal Processing. New York: Springer-Verlag., 1989.

[SMIT95] Smith, Winthrop W. and Joanne M. Smith. Handbook of Real-Time Fast Fourier

Transforms: Algorithms to Product Testing. New York: IEEE, 1995.

[TANG94] Tang, C. F. T., K. J. R. Liu, and S. A. Tretter. "Optimal Weight Extraction for Adaptive

Beamforming Using Systolic Arrays," IEEE Transactions on Aerospace and Electronics

Systems 30.2 (Apr. 1994): 367-84.

[TRAN93] Tran, Jean-Marie Q. D. and William S. Hodgkiss. "Spatial Smoothing and Minimum

Variance Beamforming on Data from Large Aperture Vertical Line Arrays." IEEE

Transactions Oceanic Engineering 18.1 (Jan. 1993): 15-23.

[VANP95] Vanpoucke, Filiep and Marc Moonen. "Systolic Robust Adaptive Beamforming with an

Adjustable Constraint," IEEE Transactions on Aerospace and Electronic Systems 31.2

(Apr. 1995): 658-68.

[VIBE95] Viberg, Mats, Björn Ottersten, and Arye Nehorai. "Performance Analysis of Direction

Finding with Large Arrays and Finite Data." IEEE Transactions on Signal Processing

43.2 (Feb. 1995): 469-76.

[YU95] Yu, Jung-Lang and Chien-Chung Yeh. "Generalized Eigenspace-Based Beamformers."

IEEE Transactions on Signal Processing 43.11 (Nov. 1995): 2453-61.

77

[ZVAR93] Zvara, George P. "Real Time Time-Frequency Active Sonar Processing: A SIMD

Approach," IEEE Journal of Oceanic Engineering 18.4 (Oct. 1993): 520-8.

Networks

[BERT92] Bertsekas, Dimitri and Robert Gallager. Data Networks. New Jersey: Prentice Hall,

1992.

[FISH95] Fishwick, Paul A. Simulation Model Design and Execution, Building Digital Worlds.

New Jersey: Prentice Hall, 1995.

[HAMM88] Hammond, Joseph L. and Peter J. P. O'Reilly. Performance Analysis of Local Computer

Networks. Massachusetts: Addison Wesley, 1988.

[SPUR95] Spurgeon, Charles. Guide to 10-Mbps Ethernet. Austin, Texas: U. of Texas, Austin

Networking Services, 1995.

[STAL94] Stallings, William. Data and Computer Communications. New York: Macmillan, 1994.

Parallel Computing

[AMDA67] Amdahl, G. M. "Validity of the Single-Processor Approach to Achieving Large Scale

Computing Capabilities." Proc. AFIPS 30 (1967): 483-5.

[BAL90] Bai, H.E. Programming Distributed Systems. New Jersey: Silicon Press, 1990.

[BECK96] Beck, Alan, ed. "Dave Gustavson Answers Questions About SCI," HPCWire, Oct. 4

1996.

[CARR90] Carriero, Nicholas and David Gelernter. How to Write Parallel Programs: A First

Course. Cambridge: MIT Press, 1990.

[CORM95] Cormen, Thomas H. and Charles E. Leiserson and Ronald L. Rivest Introduction to

Algorithms. New York: McGraw-Hill, 1995.

[FLYN72] Flynn, M.J. "Some Computer Organizations and Their Effectiveness." IEEE Trans.

Computers 21.9 (1972): 948-60.

78

[FORE96] ForeRunner™SBA-200 ATM Sbus Adapter User's Manual, MANU0069, Version 4.0,

FORE Systems, Inc., Rev. A-March 1996.

[FORT78] Fortune, S. and J. Willie. "Parallelism in Random Access Machines." Proc. l(fh Annual

ACM Symp. on Theory of Computing (1978): 114-8.

[FOST95] Foster, Ian. Designing and Building Parallel Programs: Concepts and Tools for Parallel

Software Engineering. Reading, Mass: Addison-Wesley, 1995.

[GIBB88] Gibbons, Alan and Wojciech Rytter. Efficient Parallel Algorithms. Cambridge:

Cambridge U. Press, 1988.

[GROP] Gropp, William, Ewing Lusk, Nathan Doss, and Anthony Skjellum. "A High-

performance, Portable Implementation of the MPI Message-Passing Interface Standard."

[GROP95] Gropp, William and Ewing Lusk and Anthony Skjellum Using MPI, Portable Parallel

Programming with the Message-Passing Interface. Massachusetts: MIT Press, 1995.

[GROP96] Gropp, William and Ewing Lusk. User's Guide for mpich, a Portable Implementation of

MPI, Chicago: U. of Chicago, 1996.

[GUST88] Gustafson, J. L. "Reevaluating Amdahl's Law." Commun. ACM 31.5 (May 1998):

532-3.

[HERR91] Herrarte, Virginia and Ewing Lusk. "Studying Parallel Program Behavior with Upshot."

Technical Report ANL--91/15. Argonne, IL: Argonne National Laboratory, 1991.

[HWAN93] Hwang, Kai. Advanced Computer Architecture: Parallelism, Scalability,

Programmability. New York: McGraw-Hill, 1993.

[LADD95] Ladd, Scott Robert. C++ Templates and Tools. New York: M&T Books, 1995.

[LEWI92] Lewis, Ted G. and Hesham El-Rewini. Introduction to Parallel Computing. New Jersey:

Prentice-Hall, 1992.

79

[LIN83] Lin, Shu and Daniel J. Costello, Jr. Error Control Coding: Fundamentals and

Applications. New Jersey: Prentice Hall, 1983.

[MESS94] Message-Passing Interface Forum. MPI: A Message-Passing Interface Standard.

Knoxville: U. of Tennessee, May 1994.

[NICH96] Nichols, Bradford, Dick Buttlar, and Jacqueline Proulx Farrell. Pthreads Programming.

Cambridge: O'Reilly, 1996.

[PAIG93] Paige, Robert, John Reif, and Ralph Wächter, eds. Parallel Algorithm Derivation and

Program Transformation. Boston: Kluwer, 1993.

[PROG95] "Programmer's Guide to MPI for Dolphin's Sbus-to-SCI Adapters Version 1.0." U. of

Bergen: Parallab, Nov 1995.

[QUIN94] Quinn, Michael J. Parallel Computing: Theory and Practice. New York: McGraw-Hill,

1994.

[RAGS91] Ragsdale, Susann, ed. Parallel Programming. New York: McGraw-Hill, 1991.

[SNIR96] Snir, Marc, S. et. al. MPI: The Complete Reference. Cambridge: MIT Press, 1996.

[TAKE92] Takeuchi, Akikazu. Parallel Logic Programming. New York: Wiley, 1992.

[ZOMA96] Zomaya, Albert, ed. Parallel and Distributed Computing Handbook. New York:

McGraw-Hill, 1996.

UNIX Programming

[ROBB96] Robbins, Kay A. and Steven Robbins. Practical UNLX Programming: A Guide to

Concurrency, Communication, and Multithreading. Upper Saddle River, N.J: Prentice

Hall, 1996.

[STEV92] Stevens, W. Richard. Advanced Programming in the UNLX Environment.

Massachusetts: Addison Wesley, 1992.

80

Appendix A. Extensions to Integrated Simulation Environment
This appendix contains documentation regarding the use and details of ISE. It is intended to

provide extra information beyond the high-level exposure provided in the main body of the text.

A. 1. Integrated Simulation Environment Internals

The Integrated Simulation Environment is composed of a number a components, as was
shown in Figure 2.1, which work together during a simulation. First, the user's parallel program
is comprised of several processes, each of which is an instance of the MPI executable. In the ISE,
all of the parallel processes for a given iteration run on the same machine, called the local
machine or the process machine. Second, the shared files in the system are the means by which
the different entities communicate. Third, the relay programs serve to move information between
the shared file on the local machine and the shared file on the machine running the BONeS
simulation, called the remote machine or the BONeS machine. When the parallel processes are
sending information to BONeS, the local relay process (the leftmost relay in Figure 2.1)
multiplexes the data from the different columns of the shared file into a single socket. The
remote relay demultiplexes the data to place it in the correct column of the remote shared file.
The opposite situation occurs when the BONeS simulation sends data to the parallel processes.
Fourth, the BONeS simulation for a particular iteration is running on the remote machine.

The various ISE entities are all spawned by a single program called ise. The ise program's
responsibility is to spawn a bmpi instance for each iteration. Each bmpi program spawns the
parallel processes and the local relay process for its iteration. It also creates the shared files on
the local machine and initializes their values. When the BONeS simulation is started, a primitive
in the Portal block creates the remote shared files and spawns the remote relay.

A. 1.1. Communication Structures

There are three different types of shared-memory files that are used in the ISE to enable the
communication between the parallel MPI processes and the BONeS simulation. First, the bridge
file provides information that is static to a particular iteration of the simulation. The structure
name arises from the fact that such static information can be placed in a single file, yet be read by
processes on the two machines. Thus, the bridge file bridges the gap between the BONeS
simulation on the remote machine and the MPI processes on the local machine. Second, the share
file, which has an incarnation on both the remote machine and the local machine, contains
information that is shared between the processes on the machine. Third, a BONeS file for each
machine contains columns for each rank of the parallel program and is the major component of
the communication between a rank of the MPI processes and a rank of the BONeS simulation.

The structure of the bridge file is shown in Figure A.l below. The file contains a floating-
point value for the version of the ISE currently running, an integer for number of iterations in the
simulation, an integer for number of nodes per iteration, a string for the name of the local
machine, an integer for the socket port number, and an integer flag for silent mode. There is a
bridge file for each iteration. Bridge files are named ".bmpLbridgefilexx," where the "xx" is the
iteration number to which the bridge file belongs.

81

ISE Version

Number of Iterations

Number of Nodes

Local Machine Name

Relay Port

Silent Mode Flag

Figure A.l - Structure of the ISE Bridge File

The ISE version field is used by the various entities in the simulation to make sure they are
all using the same version of the ISE. If any of the entities realizes that its version number does
not match with the version number it finds in the bridge file for its iteration, it prints an error
message to the user and terminates. Entities with different version numbers cannot work together
in most cases because the shared-memory files and mutual exclusion procedures may be different.
These problems may cause a range of errors including segmentation faults, inability to find
communication files, and incorrect timing of code blocks.

The field for the number of iterations indicates the number of iterations that have been
spawned. This number is set by the user during the execution of the ise runtime program. The
definition of "iteration" used here is a BONeS iteration. BONeS is capable of concurrently
running the same simulation with different parameters. The ise program must be told the number
of iterations so that it can spawn the correct number of MPI parallel systems to match the
simulations BONeS will spawn.

During startup, the user also specifies the field for number of nodes. The number of nodes is
used in several places to define the size of the iteration. Such places include calls to
MPI_Comm_size and creation of the correct number of columns in the BONeS files. One
limitation that the ISE places on the user is that all iterations that are running at the same time
must have the same number of nodes. This limitation is acceptable because there exist very few
situations in which BONeS will be able to spawn multiple iterations with different numbers of
nodes per iteration.

The fields for local machine and relay port are used by the remote relay program to find the
local machine. Because BONeS is unpredictable in relation to which machines (of the list
provided by the user) it will put particular iterations, the ISE must provide a method for matching
the remote machine to the local machine of the correct iteration number. These fields are
designed to allow the remote relay to search out the correct local relay.

The silent mode flag is simply an indication to the remote machine of whether or not the local
machine is in a debugging mode. If the local machine is in a debugging mode, the silent mode
will be turned off, and the BONeS simulation will spawn a window for the remote relay, which
will then print out debugging information. If the local machine is in silent mode, the remote relay
will run in the background without a dedicated window and will not print anything to the user.

The format of the share file is shown in Figure A.2. For each iteration, there is a share file on
both the local machine with the MPI processes and the remote machine with the BONeS
simulation. The reason that there must be a share file on each machine is that the file contains
fields that dynamically change during the simulation. Such dynamic information does not

82

propagate correctly across two separate machines; therefore, processes can only use this file for
communication with other processes on the same machine.

Rank

Time Factor
Spawn-Finish Semaphore

Simulation-Finish Semaphore
Parameters Bit Field

Signal-To-BONeS Mutex
Signal-To-Process Mutex

Full-Notime-Slot Mutex
Empty-Notime-Slot Mutex

BONeS Machine Name

Remote Relay PID
Execution Mutex

Figure A.2 - Structure of the ISE Share File

The rank field is an integer that aids in the spawning of the MPI processes. The MPI
processes are created one at a time. When the process starts, it will read its rank from this field in
the local share file. Once the rank is safely placed in a variable within the process's address
space, the process will signal the spawning program, bmpi, that it is safe. The bmpi program can
then overwrite this rank field with a new rank and spawn a new MPI process.

The time factor field is the floating-point number that specifies the performance scaling
chosen by the user for the CPUs in this iteration. This performance scaling was described above.
Note that the time factor is uniform for all MPI processes in an iteration but may be different for
different iterations.

The spawn-finish semaphore and simulation-finish semaphore are used for signaling the
spawning program of when the spawn has started safely and when the spawned program is
finished, respectively. A semaphore is a computing structure that allows two basic functions.
Posting to a semaphore means that the value of the semaphore counting variable is incremented.
The semaphore ensures that this value is incremented atomically; that is, no other process is able
to modify the value while one process is posting. Waiting on a semaphore means that the
counting variable is atomically decremented. If the value is zero, the semaphore wait causes the
process to block until another process posts to the semaphore, thus increasing the counting value
above zero. In the ISE, semaphores are used extensively as signals between different entities.
The spawn-finish semaphore is initially set to 0. After spawning an MPI process, the spawning
program, bmpi, waits on the spawn-finish semaphore. Since this semaphore has value 0, the bmpi
program is blocked. Once the MPI process has opened the local share file and read its rank
successfully, it posts the spawn-finish semaphore. The bmpi program will then become
unblocked and continue spawning more MPI processes. The same signaling procedure is used

83

with the simulation-finish semaphore. After spawning every MPI process for the iteration, bmpi
will wait on the simulation-finish semaphore. When the MPI processes are complete, they post to
this semaphore so that bmpi can return from the wait and terminate successfully.

The bit field for parameters contains information for the MPI processes on whether or not to
use jump-start and profiling. If the profiling bit in this field is set, then the MPI processes for this
iteration will record the times of communications and the nodes involved into a profiling file.
This file can then be used after the simulation to view with the Upshot graphical profiling tool.
The jump-start bit indicates to the MPI processes whether or not they should reset their internal
timing clocks to zero at the first MPI call. This procedure effectively means that all the code
before the first MPI call in an MPI process executed in zero time. The jump-start feature may be
used to skip simulation of any setup computations the nodes perform before getting into the
desired work.

The signal-to-BONeS mutex and signal-to-process mutex are part of a system of
communication between the BONeS simulation and the MPI processes. The method is that of
signaling with semaphores. When an MPI process wants to wait for a signal from its BONeS
counterpart, it waits on a signal-to-process semaphore. To signal the process, the BONeS
simulation will post this semaphore. A problem arises from the fact that one may want to
simulate many nodes but the operating system puts a limit on the number of semaphores that can
be used by a process. With 32 processes in a simulation, the relay programs would need access to
32 semaphores for BONeS-to-process communication and 32 semaphores for process-to-BONeS
communication, putting the number of semaphores over the imposed limit. To bypass this limit,
the ISE uses what are here called pseudo-semaphores. A single pseudo-semaphore is composed
of a mutex (one of either the signal-to-BONeS mutex or the signal-to-process mutex) and an
integer (which is stored in the BONeS file, discussed next). In the situation of the above
example, there are 32 integers for BONeS-to-process communication and 32 integers for process-
to-BONeS communication. There is only one mutex each for BONeS-to-process communication
and process-to-BONeS communication. When a program wants to signal a process, it locks the
signal-to-process mutex in the share file to ensure atomicity, increments the signal-to-process
integer for the correct process in the BONeS file, and unlocks the mutex. The situation is similar
for signaling to BONeS. To wait on a signal, a program will lock the mutex and check the integer
value. If the value is greater than 0, it decrements the value, unlocks the mutex, and returns. If
the value is 0, it unlocks the mutex, waits a short while, and tries again, thus giving some other
program the opportunity to post the pseudo-semaphore in the meantime. Using these pseudo-
semaphores, any limitation on the number of real semaphores or mutexes is avoided because
there are only two mutexes for all the pseudo-semaphores. The signal-to-BONeS pseudo-
semaphore is used by one of the MPI processes to signal its counterpart node in the BONeS
simulation that it has a network request to make or it has some information to send. The signal-
to-process pseudo-semaphore is used by a BONeS node to signal its counterpart MPI process
with an acknowledgement or with the requested data. The next fields in the share file, the notime
mutexes, are part of pseudo-semaphores used for notime, direct communication between the MPI
processes without network interaction.

The BONeS machine name and remote relay process ID fields are used for unusual
termination of the simulation. At startup, when the socket between the remote relay and the local
relay is established, the local relay is ignorant of how the connection was made. Recall, it is the
remote relay that seeks out the local relay. The first information communicated over the socket is
the name of the remote machine and the process ID of the remote relay. The local relay puts this
information in the local share file. If the user terminates the simulation prematurely, the bmpi
program will use this information to spawn to the remote machine and kill the remote relay. The
actual BONeS simulation on the remote machine must be killed manually by the user.

84

The last field in the share file is the execution mutex. This mutex is used on the local
machine only and is shared by all the entities on that machine. The goal of the execution mutex is
to provide the MPI processes with exclusive access to the CPU so that they can get their code
block timings without being interrupted by other ISE components. If other entities are allowed to
execute while an MPI process is timing a code block (this includes the other MPI processes), then
the code block timings will be falsely augmented. To correct this problem, each entity on the
local machine must lock the execution mutex before doing anything and release it before waiting
on a semaphore or a pseudo-semaphore. Using this procedure, the MPI processes are ensured
that when they lock the mutex and begin to time a code block, no other entity within the ISE can
swap it out and mar the code block timings. Other processes not affiliated with the ISE have no
knowledge of this execution mutex and do not lock it when executing; therefore, the machine on
which the MPI processes are running should be free of activity from other programs or other
users in order to get code block timings of an unloaded machine.

The BONeS file structure is shown in Figure A.3. There are two BONeS files, a local copy
and a remote copy, for each iteration. The purpose of the relay programs is to relay the dynamic
information in the BONeS file on one side of the socket on one machine to the BONeS file on the
other machine. Each BONeS file has a column for each node. The communication between an
MPI process and its counterpart node in the network simulation is done completely through this
column in the BONeS files.

NodeO
Column

Nodel
Column

Node 2
Column

Node 3
Column

Request (which call
and at what time)

Request (which call
and at what time)

Request (which call
and at what time)

Request (which call
and at what time)

Packet Header
(source, destination,

tag, size)

Packet Header
(source, destination,

tag, size)

Packet Header
(source, destination,

tag, size)

Packet Header
(source, destination,

tag, size)

Signal-to-Process Int Signal-to-Process Int Signal-to-Process Int Signal-to-Process Int
Signal-to-BONeS Int Signal-to-BONeS Int Signal-to-BONeS Int Signal-to-BONeS Int

Signal Type Signal Type Signal Type Signal Type

Data Segment Data Segment Data Segment Data Segment

Figure A.3 - Structure of the ISE BONeS File

The request field contains a structure for making network communication requests and
returning network time information. For processes making requests to BONeS, the request field
contains the type of MPI call requested and the time at which it is to be called. Each process
times its code block, reports to BONeS the time of the MPI call and which call it is, and waits for
BONeS to reach that point in time and initiate the call. When the BONeS simulation is finished
with an MPI call, it reports the time of completion to the MPI process through the time field in
this structure.

85

The packet header field contains information necessary to complete MPI calls. For example,
an MPIJRecv requires the receiver to specify the message envelope (source from which to receive
and tag to receive) to the MPI implementation. This information is located in this packet header
field when BONeS initiates the MPI_Recv. This field is also used by BONeS to inform the MPI
process of such information as the exact message envelope received (in case the MPI process had
specified MPI_ANY_SOURCE or MPI_ANY_TAG) or the actual data size received.

The signal-to-process integer and signal-to-BONeS integer in each column are part of the
array of pseudo-semaphores discussed above.

The MPI processes and the BONeS simulation use the signal type field to inform the relay
programs about the type of information being sent. The relay programs use a fixed-length
message format when communicating with each other over the socket. This message structure
includes a data size field but does not include room for any data. If the MPI processes and
BONeS simulation want to communicate some data, they inform the relay that the signal type is
"send data." When the relay creates the fixed-size message to send across the socket, this signal
type is included so that the relay on the opposite end of the socket will know there is additional
information to be retrieved. The originating relay will then send the variable-sized data through
the socket. The opposite relay will read the correct amount thanks to the signal type field and the
data size field in the packet header. If there is no data to send, the signal type is set to "send no
data." If the message is an acknowledgement from BONeS to a request made by a process, the
signal type is set to "acknowledge request." This setting specifies to the relay programs that they
should check to see if the request was an MPI_Finalize. If so, then the relays decrement their
count of how many MPI processes remain alive. When all MPI processes have received
acknowledgements to MPIJFinalize, the relay programs can terminate.

The last field in the BONeS file is the data field. The data field is used when an MPI process
wants to send data through the network or when a BONeS node receives a message over the
network and returns it to the MPI process. Even though there is no limit on the size of the data
that can be sent with an MPI call, the data field in this file is a fixed-length field. When a process
wants to send more data than there is room in the field, it initiates a piecewise transfer operation
with the local relay. The process will place the first part of the data in the field and wait for a
handshake from the local relay (via the pseudo-semaphore in the column for that process). When
the handshake arrives, the process knows that the local relay has copied that portion of the data
into its memory space so that it is safe to overwrite the data field in the BONeS file with the next
piece of the large data message.

A.1.2. Process Structure and Spawning

The MPI processes are created by the user in the same way the user would create any other
MPI parallel program. The user includes the MPI_In.it command at the beginning of the MPI
program, calls the standard MPI functions within the program, and ends with the MPI_Finalize
command. The user includes the mpi.h header library file and compiles with the libmpi.a object
archive file. The user must simply use the correct path for the ISE versions of these files instead
of the versions used by any other implementation.

The ISE imposes a small number of restrictions or warnings on the user. First and foremost,
the entire MPI standard set of routines is not implemented. There are several of the core
functions, including standard point-to-point communication, broadcasting, barrier
synchronization, probing, and reduction. Any MPI function the parallel programmer uses that is
not in the ISE MPI library will cause a compile-time error. Second, the programmer should place
the MPIJnit as the very first command in the program (or as near as possible). The reason for
this warning is that every process in the ISE on the local machine must lock the execution mutex

86

or else it may be interfering with another MPI process that is trying to take a code block timing.
The MPI_In.it is the first place in which the ISE routines can enforce this rule on the process. All
computations the MPI process includes before the MPIJnit are computations that could possibly
get included in the code block timings of another process. A similar situation is true for
MPI_Finalize; it should be found at the very end of the user program. These function-placement
limitations will be solved in the next version of the ISE.

Before the MPI processes are spawned, the bmpi program must spawn the local relay. First,
bmpi creates the bridge file, local share file, and local BONeS file and initializes the semaphores,
mutexes, and pseudo-semaphores in them. Next, it sets the port error flag in the share file to false
and spawns the local relay. The local relay is given three command-line arguments to use for
configuration: number of nodes, iteration number for which it is relaying, and socket port number
to try. The bmpi program then unlocks the execution mutex and waits for the spawn-finish
semaphore in the share file.

Once the local relay is started, it opens the bridge file and the local share file for the iteration
number specified to it. Once the share file is open, the local relay has access to the execution
mutex, which it locks. It then opens the BONeS file and begins to set up the socket. First, the
local relay calls the socket function from UNIX to get a socket descriptor. Then, it attempts to
bind that descriptor to the communications port number as specified to it on the command line. If
the port is in use, the local relay sets the port-error flag in the share file, unlocks the execution
mutex, posts the spawn-finish semaphore, and exits without fanfare. If the binding is successful,
the local relay posts the spawn-finish semaphore, uses the socket listen command to specify the
connection buffering for possible incoming connections, and unlocks the execution mutex. The
local relay then waits on an infinite poll for an incoming socket connection, after which it will
accept the connection.

At this point, the bmpi program can wait on the spawn-finish semaphore and relock the
execution mutex. If the port-error flag is set, bmpi increments the port number it gave to the local
relay by one and re-spawns the local relay in the same manner as just discussed. On the other
hand, if there is no port error, bmpi may begin to spawn the MPI processes.

The MPI processes are spawned one-by-one in the following manner. First, the bmpi
program places the time factor, the jump-start flag, the profiling flag, the number of nodes, and
the rank number zero into the share file. It also places the name of the process machine (the
machine on which it is running and on which the MPI processes will run) in the bridge file for its
correct iteration. It then spawns one instance of the MPI program. These parameters cannot be
passed into the MPI process as command-line arguments because the user effectively has the
property rights to the command-line arguments for the parallel program. Modifying the number
of command-line arguments the program can take or mixing ISE command-line arguments with
user command-line arguments may very well destroy the functionality of the user's code.
Therefore, no command-line arguments are added to the parallel program by the ISE and all
parameters are passed in during the MPIJnit call. As in the case of spawning the local relay,
bmpi then unlocks the execution mutex and waits for the spawn-finish mutex.

Once the instance of the MPI process is started, execution within the program proceeds
normally until the MPIJnit function is reached. The MPI process then reads the bridge file with
the lowest iteration number (iteration numbers appear as part of the file name of the bridge files).
The process compares the name of the process machine found in this file to the name of the
machine on which it is running. If the names are the same, then the MPI process has discovered
to which iteration it belongs. If the names are not the same, the process reads the bridge file with
the next highest iteration number. This procedure repeats until a match is found and the process
knows its iteration number. This is the only method available to give the iteration number to the

87

MPI process without command-line arguments because the process must know its iteration
number before it can open the appropriate share file to get its parameters.

Once the iteration number is known, the process can read the share file for its iteration and
obtain its node number from that file. It also obtains the profiling flag value, the jump-start flag
value, and access to the execution mutex, which it immediately locks. Once the process has its
rank and parameter values, the bmpi program is allowed to overwrite them in the share file and
spawn another process. Therefore, the MPI process posts the spawn-finish semaphore. However,
before the process relinquishes the execution mutex, it finishes initialization by clearing the
debugging time file and defining the profiling functions. The process records the time of the
MPIJnit (which is always zero seconds) and proceeds to time its first code block. When it gets
to its first MPI call, it will unlock the execution mutex, make the request to the local relay by
posting the signal-to-BONeS pseudo-semaphore to the local BONeS file, and wait for a response
in the form of a successful wait on the signal-to-process pseudo-semaphore. Because the local
relay has not completed its initialization, the MPI process will effectively be blocked until such
time as all processes have been spawned.

With the spawn-finish semaphore posted and the execution mutex relinquished, the bmpi
program can then proceed to lock the execution mutex, spawn the MPI process with rank 1,
unlock the execution mutex, and wait. The procedure repeats until all the MPI processes have
spawned and come to the deadlock at their first MPI calls. The bmpi program then informs the
user to start the BONeS simulation.

Once the BONeS simulation is started, the connection for which the local relay is waiting will
eventually be made (see the below section on remote relay spawning). The local relay will then
lock the execution mutex and read the machine name and process ID of the remote relay from the
socket. It places this information in the local share file. If the user kills the simulation, the bmpi
program will read this information to kill the remote relay. The user must kill the actual BONeS
simulation separately using the BONeS GUI. The local relay then begins to look for
communication requests from the various columns in the local share file (which certainly exist
because every MPI process is deadlocked after having made such a request) and from the socket.

A. 1.3. BONeS Interface Structure and Spawning

The description of the BONeS/MPI Portal itself is described in a later section of this
document. This section describes the top level of the portal and how it interfaces with the outside
world. The interface is completely contained within C functions that are called from BONeS via
BONeS's primitive block ability. When BONeS starts a simulation, multiple-iteration or not, it
numbers the iterations beginning from zero. BONeS provides a runtime block that outputs the
iteration number. It is this block which is used to feed the primitive functions the iteration
number so that the correct files can be accessed. There is no such BONeS block to automatically
provide the node rank number to the primitive functions in the individual nodes. Instead, the
node rank must be designed into the user's network model and passed to the portal as an
argument. The portal then passes the rank number to the primitive functions.

When the BONeS simulation is started, for each iteration, a BONeS "Ink" in the system view
of the iteration is activated. At this initialization, the BONeS simulation reads the bridge file for
its iteration, creates the share file on the remote (BONeS) machine, creates the remote BONeS
file, and spawns the remote relay. The command-line arguments to the remote relay include the
name of the machine to which it should connect (obtained from the bridge file for the iteration),
the port number to which it should connect (also from the bridge file), the number of nodes, and
the iteration number. The BONeS simulation for that iteration then waits on the spawn-finish
semaphore in the remote share file. The processes on the remote machine do not need to lock the

88

execution mutex in the remote share file because there is no code-block timing happening on the
remote machine.

When the remote relay begins, it reads the bridge file, the share file, and the BONeS file for
its iteration. It then uses the UNIX socket command to get a socket descriptor and the connect
command (with the agreed-upon port number) to connect to the local relay. Once the connection
is established, the remote relay informs the local relay of the name of the remote machine and the
process ID of the remote relay. This information will be used by bmpi to kill the remote relay if
there is an abnormal simulation termination on the user's side. The remote relay then posts the
spawn-finish semaphore in the remote share file for its iteration and begins to look for
communication requests. Requests from the MPI processes to BONeS will arrive on the socket
and communication requests from BONeS to the processes will appear in the various columns of
the remote BONeS file. The first communications will always come from the processes because
BONeS is waiting for them to make a request.

Once the "Ink" block in the BONeS system view for a particular iteration has run the
primitive to complete the above operations, the portal at each node is then initialized. This
initialization includes reading the bridge file, remote share file, and remote BONeS file. Each
node then proceeds immediately to retrieving the first request from its counterpart node on the
local machine.

A. 1.4. Communication and Relays

This section presents the procedures used by the elements of the ISE to complete the various
MPI calls. Included are detailed descriptions of how the MPI processes, relay programs, and
BONeS simulation interact to complete the MPIJSend and MPIJtecv function calls. Due to the
fact that the methods used to implement the remaining MPI functions are variations of the
methods for the send and receive, the descriptions of the remaining functions are shorter. To help
in the understanding of the detailed operations, example situations are used throughout the text.

Each MPI process keeps a private copy of the current time of the simulation in its memory.
At initialization, each process sets this current time to zero. Assume the first MPI call for process
3 is an MPI_Send. After initialization, process 3 would lock the execution mutex and time the
code block that precedes the MPI_Send call. The time for the code block, assumed to be 2
seconds, is then added to the private copy of the current simulation time, in this case yielding a
new simulation time of 2 seconds. Then, a "send overhead" is added to the simulation time, say
0.1 seconds. This "send overhead" is obtained on the fly by timing some code that functionally
does nothing but computationally would do the same things required for an MPI implementation
to issue an MPI_Send. That is, the added overhead simulates the time the MPI implementation,
not the user program, spends in setting up a send call.

Process 3 then unlocks the execution mutex and makes the request to send. To issue the
request, the process places the time of the call (2.1 seconds) into the request structure field in the
local BONeS file under column 3 (for process 3). It also places an integer code for the type of
call (an MPI_Send) into the request structure. The process then locks the signal-to-BONeS mutex
in the share file and increments the signal-to-BONeS integer in column 3 of the local BONeS file
to 1. Finally, the process unlocks the signal-to-BONeS mutex. The entire procedure of locking
the signal-to-BONeS mutex, incrementing the integer, and unlocking the same mutex describes
the entire process of posting the pseudo-semaphore for the column-3 signal to BONeS. It is
important to note that the MPI process must unlock the execution mutex before posting the
pseudo-semaphore because the locking sub-operation at the beginning of the procedure may
block the process. Blocking the process that holds the execution mutex may cause deadlock

89

when no other process can execute. After the post, process 3 waits on the signal-to-process
pseudo-semaphore.

The local relay program is continually looking through the local BONeS file to see if the
signal-to-BONeS pseudo-semaphore has been posted in any of the columns. In order to do this
polling, the relay stays in a loop in which it continually issues try-waits on the pseudo-
semaphores. The entire try-wait procedure is composed of the following sub-operations. First,
the relay tries to lock the signal-to-BONeS mutex in the share file. If it is not successful
immediately, the mutex try-lock returns, as does the pseudo-semaphore try-wait; the result is
simply that the pseudo-semaphore is not yet posted and it will try again later. If the mutex try-
lock is successful, then the relay program has the lock on the signal-to-BONeS semaphore. It
checks the value of the signal-to-BONeS integer in the column of the process it is polling. If this
value is 1, the relay sets the integer to 0 indicating the wait, unlocks the signal-to-BONeS mutex,
and returns a true flag from the pseudo-semaphore try-wait call. The relay program then knows
that the process for that column is trying to communicate. If the integer is still 0, then the relay
unlocks the signal-to-BONeS mutex and returns false from the call. The relay program would
then try either the next column in the same manner or the socket.

Returning to the example, the local relay soon finds that the try-wait on column 3 is
successful. It reads the call type and the time at which the call is to take place. The relay
repackages this information in a fixed-size relay packet. Also included in this packet is the signal
type set to "send no data" and the process rank. The local relay sends this packet into the socket
and returns to polling the signal-to-BONeS pseudo-semaphores and the incoming socket.

The remote relay is also in a loop polling the socket and the remote BONeS file for signal-to-
process pseudo-semaphores. The remote relay eventually finds something on the socket and
reads from the socket for the known length of the relay packet. Once read, the signal type in the
packet ("send no data") informs the remote relay that there is nothing more to read from the
socket for this particular transaction. The remote relay reads the process rank (3) and places the
call time and call type in the request field in column 3 of the remote BONeS file. It then
completes a post to the signal-to-BONeS pseudo-semaphore in the remote BONeS file.

At this point, the BONeS simulation is waiting for the posted signal from the remote relay. It
is important to note that the BONeS simulation does not proceed past the time of the last
completed MPI call until it knows the next request time for every process. That is, no simulation
time can proceed until BONeS knows at what time to stop for the next MPI call. Had the ISE not
been implemented in this manner, it would have been possible for simulation time to pass in the
simulation and for a request to arrive after it should have been serviced.

Node 3 of the BONeS simulation waits on the signal-to-BONeS pseudo-semaphore. It then
reads the call type and call time for the requested MPI operation. These values are stored in a
local BONeS variable in memory. BONeS posts the signal-to-process semaphore in column 3 of
the remote BONeS file to acknowledge receipt of the request. The BONeS node then sets a timer
to trigger the portal block at the correct request time.

The post that the BONeS node made is propagated through the remote relay, socket, local
relay, and finally the local BONeS file. The MPI process waits on this semaphore. Once the
process knows BONeS has received its request, it writes the MPIJSend information into the local
BONeS file. This information includes the amount of data to send, the destination of the data and
the data tag. The signal type field is set to "send data." Process 3 also places the data it wants to
send into the file and posts the signal-to-BONeS semaphore. If the data is too large to fit in the
BONeS file, the piecewise transfer previously discussed is used.

90

The local relay sees this post and reads the information. It places the destination, tag, size of
data, and signal type information in a fixed-size relay packet, which is sent through the socket.
The local relay also reads the data into its memory space. The address where it stores this data is
then also sent through the socket. The actual data vector itself does not leave the local relay's
data space. At a later point in time, when a receive is completed, this address will be consulted to
retrieve the data. This procedure is used to optimize the operation of the BONeS simulation
because BONeS would have needed to manage a large data structure through its many
complicated blocks if the actual data vector was sent. Instead, BONeS must only propagate the 4-
byte address of the data.

When the remote relay sees activity on the socket, it reads a fixed-size relay packet from the
socket and discovers that there is additional information to be read (via the "send data" signal
type). It reads the local relay's address of the data, places all the information in the remote
BONeS file, and posts the signal-to-BONeS semaphore in column 3. At this point, BONeS is still
simulating the time up to the request time. When BONeS reaches the request time, it reads the
information, creates a packet out of the destination, data size, tag, and local relay address, outputs
the packet on its simulated network, and posts an acknowledging signal-to-process semaphore.

This acknowledgement will proceed through the message path just as described before.
When the MPI process waits on the semaphore, it locks the execution mutex and proceeds to time
its next code block to repeat the entire process.

Now suppose process 2 wants to receive a message from the network. In the same manner as
described for making an MPI_Send request, process 2 issues a request to BONeS indicating the
type of call (MPI_Recv) and the time of the call. Suppose this time is 3 seconds. After receiving
the acknowledgement, the process sends the source from which to receive (which may be
MPI_ANY_SOURCE), the tag of the message to receive (which may be MPI_ANY_TAG), and the
expected size of the data to BONeS. The process then waits. When the request time arrives,
BONeS reads the desired message envelope and searches its buffers for a message that has
already arrived that matches the envelope.

If it finds the message, which is comprised only of an envelope and the local relay address,
then it sends the information through the message path to the local relay. BONeS also sends the
current time, which is 3 seconds because the desired packet was already available at the time of
the MPI call. The local relay receives this information and places it into the local BONeS file in
column 2. The local relay also accesses the address in its memory space. It places the
information at this address into the BONeS file. The local relay then signals process 2, which
reads the data into its memory space. In addition, the process reads the completion time of the
operation and adds a "receive overhead" (say, 0.1 seconds) to the time. This receive overhead is
obtained in the same manner as the send overhead previously described. The process then
overwrites its local copy of the current simulation time with this new time (3.1 seconds).

On the other hand, if the BONeS node does not find a match to the requested envelope
immediately, it will not respond to the process and will continue to simulate the network. As
time in the simulation passes, the desired packet will arrive and BONeS will follow the steps
outlined above to inform the process of the arrival. This situation is the reason why BONeS must
inform the process of the completion time of the operation, for without such a mechanism, the
process would have no idea at what time the packet was received and its request times for later
MPI calls would be erroneous.

There are two points that need elaboration about the operations the local relay carries out to
move the data from its memory to the memory of the process. First, recall that the address
received from BONeS will point to a data location. The local relay will also receive information
about the length of this data.. If the data is longer than there is room in the BONeS file, the

91

piecewise transfer used in the MPI_Send is used in the opposite direction. Second, once the data
has been safely and completely transferred to the MPI process, the local relay deallocates the
memory where it was stored. An exception to this rule is that the local relay cannot delete data
that was sent via a broadcast until all the receives have been completed.

With the above operations for the MPI_Send and MPI_Recv functions in mind, the operations
of the other MPI calls included in the ISE are simple in nature. For a broadcast, the root node's
operations are the same as for MPI_Send except the destination node is set to "-1." The nodes
that are not the root issue MPI_Recv operations from the root. Again, the relay must be careful
not to delete the data before all receptions are complete. For MPI_Probe, the MPIJRecv
operations are followed except for the fact that the packet remains in the portal and only the
matching envelope information is sent to the process. For the MPIJprobe, the MPI_Probe
operations are followed except that the portal will always acknowledge immediately with a true
or false instead of waiting for a matching packet to arrive. For MPI_Barrier, the nodes
participate in an all-to-all communication using broadcasts. When a node has received a barrier
packet from all other nodes, the synchronization has been completed. The MPI_Reduce call uses
standard sends and receives to get the data vectors to the root, which then executes the desired
reduction operation. The MPI_Allreduce function simply adds a broadcast to the end of the
MPI_Reduce so that all nodes will receive the answer to the reduction operation.

A. 1.5. Portal Internals

This section examines in detail the internal operation of the Portal block, which is attached to
the top of the user's fine-grain network model. This Portal contains the primitive code which
interacts with the remote relay and remote BONeS file, as described above. However, the Portal
also contains several blocks that are used to handle the MPI requests once the primitive code
reads the necessary information. These blocks are described in this section.

A. 1.5.1. Decomposition of ISE Functions

The ISE Portal is composed of many primitives that are mostly contained inside of one block
function called BONeS_MPI Portal. The block diagram of this function is shown below in Figure
A.4. This function contains the primitive functions BONeSJAPI Initialize, BONeS_MPI Get
Request, SCALE Input Queue/Recv Functions, BONeS_MPI WTime, BONeSJAPl BarrierJime,
BONeS_MPI TriggerJJetwork, BONeS_MPI Send, and Set Termination Flag. The remaining
numerous blocks are part of the BONeS Core Pool Library and are not discussed in full detail.

92

fP Hod« N«»a
tP BOH«S Addressing nod«?
[R]Request_Typ«

[HjTneH
f P ft«nk 5 fn N«t_Activity_n«ti

fp Nu*ber_of_Nod«s
flP Application Layer Input Ou«ue
[H"]Puaay QU»U* Meaory
fPUhioh Hod« Writes D«bug FN«* *

[jfJSeruic« R«qu««t

rbR«qu«st„typ«B
>1.3 g

o
a

 B

-gigsü.

pll""-'

vS«t Tsralnatlonl
'"■i I

ggSIHiHS-i

3

Chaok for
KTS 81gn«l*0

R«ad Request.,
las; Ü

A«"

This blook h«ndl«« «tl funotlons whlol
■ ust aocass th« Input qu«u«. suoh as
tlPI.Probe. MPJ.IProb«. «nd
HPI_R«o«lv«.

B0N«S_T1P]
»Sand PriaM
1.3

id«<«IntU«JT^

•—zg-k-"

USONaS.MPI
r^B«rrl«r_t lwl.3

I BON«S_
LUTrtgg«
^^Prlatt

j t>3

;_MPI
gg«r.N«tuork D

 B

9 6oto Pafaaeter .
[> Chang« Funot Ion '
E2

% 6 0 Ö
SCALE Input
Queue-' Reov
-unotIons

-fr-»M-

RTS'CTS in

[JTJRTS Status
[FTJCheok Ou«u« Status?

r->BOH«S_MPI I
{ Date »eoket

3t

Haa«d LocatIon B0HeS_t1PI
»Inltleliz«£>

1.3 Initialize"

This block updates the
paraat«t«rs for the next
r«qu«st. Two parameters
In Uersion 1.1 are upda
r«qu«st typ«, «nd r«qu«:

>T«st H*t

T~ Conu«i
!->to SCi

«E>T«iip

A©
RTS'CTS out

QTJshaptr QTjbonosf I l«ptr [FJooMonPt l«ptr

[H]any_tag_M |F]barri«rt«g_B [H]lprob«_e [jljsand.«
[F]«ny_sourc«_«j [H]r«dtio«t«g_« [K]prob«_ii [R]r«ov_e
[S]bo«tt«g_a [F]Mti»e_« QT]f inal iz«_» [F|b«rri«r_ti*•_«

[H]trigg«r_n«tMork_» GD *»>ort_*

In/Out SCALE SflP

Figure A.4 - The BONeS_MPI Portal

The BONeS_MPI Portal is essentially the gate between the MPI processes and the BONeS
simulation environment. It contains three ports to link into a network simulation: a bidirectional
data port, and two sets of RTS/CTS (Ready to Send/Clear to Send) signaling ports.

The BONeS_MPI Initialize block is a function that is executed once at initialization.
However, BONeS allows orders in initializing blocks, and it was particularly important to execute
the BONeS_MPI Initialize block before any other block was allowed to function. As was
discussed previously, ISE uses shared files to communicate between the MPI processes and the
BONeS simulation. In order to write to these shared files, each node has to query the UNIX
kernel for a file descriptor pointing to the named file.

The BONeS_MPI Get Request, in the upper right-hand corner of Figure A.4, queries the
shared files (as described above) for its current task. BONeS will stall until a request is placed by
the process, so the process must ensure that a request is available to BONeS whenever it has
completed its last task. This was also discussed in further detail above. The Get Next Request
block sends out two statistics. The first is the request type and the second is the request time.
These statistics tell BONeS what it is going to do next and when it is going to do it. The Portal
places an event at a future time with event timers. When this time has expired, a trigger is routed
via the request type number to the requested block function, which may be one of nine requests:
MPI_Wtime, MPI_Send, MPI_Receive, MPI_Probe, MPIJprobe, MPI_Finalize, MPI_Abort,
Barrier Time, or Adjust Parameter.

The MPI_Wtime is used to inform the MPI process of the current simulation time. Note that
when this request is serviced (as is done for any other type of request), that a trigger is sent back
to the Get Next Request function, except in the case of the Set Termination Flag.

The Set Termination Flag block handles the event MPI_Finalize. Its primary function is to
shutdown the simulation. Because of this, it does not require a trigger to the Get Request block.
Essentially, all of the requests have been consumed and that node is ready to shutdown. This
function, unlike most of the ISE functions, is not a primitive, but is made up of modules that

93

BONeS provides. The Set Termination Flag works with the Test Simulation End primitive,
which will terminate the simulation when each of the nodes has set this flag. The Test Simulation
End is not part of the ISE Portal function because it must be placed at the system level.

The MPIJSend is one of two essential operations (send and receive) for a message-passing
paradigm. The send function executes the Create DPSA Data Packet block using the envelope
information it has retrieved form the BONeS file. Notice that the structure is composed of five
main components: an address specifying the data location in the local relay, the data size field (in
bytes), a tag field, the destination, and the source. The tag and the source are the basic
discriminates in receiving a packet. The destination field is used primarily to route the data
packet through the network. The data may be of any arbitrary size. Any data types may be sent
through the network (i.e. integers, floats, characters, etc.) because only the size is important (the
local relay has already dealt with storing the data in memory space).

Figure A.5 - Create DPSA Data Packet Function. This function creates the data structure for the
BONeSJAPI Data Packet.

The request type MPIJRecv is another essential function for a message-passing interface.
The MPI_Recv block and the probe blocks (for MPJJprobe and MPI_Probe) are the only
BONeS/MPI primitives with two services. Note that there are two inputs into the device. The
trigger input is serviced when the request time expires. It reads the message envelope
information from the shared file and sends the tag and source fields to the two outgoing ports.
The majority of the blocks in the SCALE Input Queue/Recv Functions are used in correctly
receiving MPI data packets. Each of the incoming data packets are placed into a buffer called
FIFO w/Reset and Length. This FIFO temporarily holds onto incoming packets until they are
matched with the same source and tag fields output from the two ports of the MPI_Recv block.
When a match is made, the data packet flows through a switch until it is sent into the input data
port of the MPI_Recv module. The SCALE Input Queue/Recv Functions block (shown below as
Figure A.6) includes the MPI_Recv, MPIJprobe and MPI_Probe functions and the SCALE Test
Incoming Packets block, which provides the tag and source-matching functions.

94

Trlgg»r^R«o»iw»

SCALE T»»l

t« VI.SO
4 Leäi=H-g;

[fji^;;r-"'>gj^

Hatwork Data Input

[FjPutl Packst
Q^Found-'iFouftd
[H]T«g Ualu» to »mich
[FTJSourea to Match
JNJSIza of Raoaluad Packat
[n]Tag of Raoalvad Paokat
[H~| Souro» of Racafvad Paokat
pT|Raqua»t Typa
[H]TnoM

>Tag toD 1
flat oh j

?rrf[5lJfc. W c>L|rs»rlta Souroa_i
■—ffirreata^lrto n.tch »h

fPRank
fn Nat_Actlvlty_Matric
fMQuaua Maaory
fHbona*fllaptr
ftlshaptr
fp Application Lauar Input Quaua

fP Mhloh Noda Uritas Dabug Fllai ?

fn Chack Suaua Slatu«?

fn anu_tag_a ftlbarriartag.«

fn ang,soure«_» ffl raduoatag_«

fn boast tag.«

Figure A.6- Close-up of Receiver Matching Logic.

The ISE must buffer incoming data packets until they are matched with a corresponding
receive request. The circuit above shows the logic for matching two parameters: tag and source.
This module requires multiple arguments that are stripped off of the packet along the way. These
arguments include the source, the data size, and the tag. The current model also supports
MPI_ANY_SOURCE and MPI_ANY_TAG fields. The second service of Receive Request is to
write the matched message envelope and the local relay address to the BONeS file and trigger the
Get Request module. The other functions of the ISE Portal are described in further detail in the
Implementation Guide section below.

A. 1.5.2. Enhancing ISE Performance

One of BONeS' greatest limitations is its computational requirements, especially when
simulating a high-fidelity model with many nodes. Simulating one second could take thousands
of hours. Since this is impractical, a few modeling tricks were employed to speed up the
simulation time. Many methods were proposed to combat this problem including reducing the
fidelity of the models. However, since this is, in general, a poor solution to the problem, a more
robust alternative was necessary. The technique employed was to disable parts of the model, in
effect sending them into a waiting state. The philosophy is this: if the network is idling, lower the
fidelity of the model temporarily. The particular models that were tested for this were driven by a
master clock. Every aspect of each model was controlled by this clock device, much like a real
electronic device. This provided the perfect point to place a shutdown gate. Thus, the model
operates in two modes, regular mode and standby. Unfortunately, in some programs, situations in
which the standby mode can be incorporated may be quite rare, so speedup of simulation time
may not be gained. However, in the procedures tested, there was ample opportunity for speedup
in standby mode. Standby mode occurs only if the entire network is idling. If any single node
has any piece of data on the network, the model has to operate in regular mode. To account for
traffic on the network, a single global variable was created that could only be incremented and

95

decremented. When a piece of data enters the network from the Portal, this value is incremented;
when it leaves, the variable is decremented. In this manner, an exact account of how much traffic
is currently in the network is known. In addition, each node must take into account the next time
it needs to service a request. In the case in which there is no traffic on the network and every
node will service a request in the future, the simulation can basically fast forward to the earliest
time for the next request without hurting the fidelity of the model. A pair of functions is used to
control this functionality. Figure A.7 below shows the Global Clock Gate function which sets the
Global Next Event Time when the simulation can fast forward. This variable is set to the nearest
service time. The complementary function ClockRouter is used to route the clock signal when
TNow is greater than the Global Next Event Time, otherwise the clock signal is sunk. Figure A. 8
shows the master clock with the ClockRouter gate on its exit path. In fast-forwarding mode, only
the clocks and fast-forward mechanisms are simulated, which greatly affects the computational
time in simulations with lightly loaded networks.

Figure A.7 - Close-up of the Six-Node Bidirectional Array's Global Clock Gate. The Global Clock Gate
tests whether or not the simulation can fast forward to a later time. The system may lower undesirable

computational time by reducing the fidelity of the model during idle periods.

96

Figure A.8 - Master Clock with the ClockRouter Gate. The Master Clock, which drives the simulation for
both the bidirectional array and ring, may be temporarily cut off while the simulation is idling. This

effectively fast forwards the simulation since it lowers computational complexity for brief periods.

A.2. User's Guide

This section lists the steps required to run an MPI parallel program over a BONeS network
model in the ISE environment. It is targeted toward users with moderate skills in UNIX and
BONeS. It is assumed that both the BONeS model and MPI program have already been
constructed and debugged.

Executing a simulation consists of two major steps: first starting the ISE and then starting the
BONeS simulator. The ISE program will prompt the user with a list of questions that can be set
to default values when unsure. The ability to open and simulate a model in BONeS is not
discussed in this section for brevity. An adequate level of competence can be obtained by
working through the BONeS tutorial.

A.2.1. Minimum Hardware Requirements

2 - Solaris 2.5 (or higher) networked workstations
1 - graphical terminal; may be the same as one of the workstations

A.2.2. Minimum Software Requirements

1 - licensed copy of BONeS from Alta Group
1 - licensed copy of Sun's C compiler
1 - ISE software package

A.2.3. Starting the ISE Program

The ISE program will prepare a parallel program for execution with the BONeS model. This
must be done before the BONeS model begins simulation. Be sure that the parallel program to be
simulated has been compiled with the appropriate ISE compiler. To quit or if a mistake is made,
the program may be exited without changes by pressing CTRL-C.

1. Log on to the graphics terminal and open a new terminal window. This window shall be referred
to as the ISE window.

97

2. Make sure that the ISE package directory is included in the path variable located in .cshrc.
3. Run ise to begin the program.
4. Choose the directory that contains the parallel program.
5. Specify the number of iterations that will be executed. Multiple iterations occur when multiple

values are assigned to a single parameter in BONeS (also known as range variables). If unsure,
specify one iteration.

6. Specify the number of nodes on which to simulate processes. That is, if the BONeS network
consists of 5 network nodes, then 5 nodes should be specified here.

Steps 7-10 should be repeated for each iteration specified above.
7. Select the type of machine that will simulate the processes. These categories come from a

specially formatted .rhosts file located in the user's home directory. An example format can be
found in the appendix. If this format is not used, only one category will appear at this step.

8. Select a machine of the given type that will handle all of the parallel processes for this iteration.
This machine must be different from the one used to run the ISE and BONeS, hence the need for
two machines at a minimum is illuminated. After selection, a list of the most taxing processes on
that machine will be displayed. The machine should have a relatively light load to produce
accurate results. If the machine seems too heavily loaded, the selection may be rejected and a new
machine may be chosen for this iteration. Each new iteration will require a new machine and the
ISE will prevent selection of the same machine more than once.

NOTICE: Failure to properly select machines to simulate the parallel processes may provide
inaccurate results or prevent the simulation from starting.
9. Enter the command line of the parallel program followed by any command line arguments used by

that program. Notice that unlike other MPI implementations, no MPI-specific command line
arguments need to be included.

10. Enter a time factor that scales the relative performance of the processor. For example, if the
processor actually simulating the processes is twice as fast as the processor being simulated, enter
a time factor of 0.5.

11. Activate profiling if parallel analysis after simulation execution is desired.
12. To decrease simulation time, jumpstart may be activated. This feature makes the BONeS

simulator "jump" to the first MPI call. This feature may be deactivated at this time to prevent
simulation crashes.

13. The output produced by the MPI program itself may be redirected to the file entered at this
prompt. This feature may also be deactivated at this time.

The following prompts appear after the above steps have been followed for every iteration.
14. All of the settings specified in this session can now be saved. The user then has the option of

leaving the program. Continuing the program will start the parallel processes and spawn a new
terminal window for each iteration.

15. The ISE is now ready for the BONeS simulation to begin. The terminal windows that were
automatically spawned should list the size of the model that the processes are expecting.

A.2.4. Starting the Network Simulation

1. Open the model library containing the highest-level model of the system. The network structures
and BONeS/MPI components should have already been connected and constructed to some
arbitrary size (i.e. number of nodes).

2. Open the "BONES_MPI Pool 1.3" library. This contains the necessary primitives for the
BONeS/MPI components to communicate properly with the ISE.

3. Go to the BONeS Simulation Manager and select or create a simulation based on the correct
number of nodes. This number should be equal to the node number specified in the ISE.

4. The number of iterations must also match that specified in the ISE. However, this number is not
set explicitly in BONeS. Rather it is specified through the use of range variables in one of the run-
time parameters. For example, if two different packet sizes are specified in the packet size
parameter window, then two iterations will be simulated. When using a simulation that was
already created, it is a good idea to check all the parameters to make sure there are no range
variables. If more iterations are started on BONeS that by the ISE, the simulation manager will
likely crash the simulation.

98

5. After all of the parameters have been set correctly, open the Run dialog box.
6. Select the machine(s) that will be chosen randomly by the simulation manager to run the

iterations. For the same reasons as given previously, none of these machines should be the same
as the machines chosen from within the ISE to simulate the processes. If unsure, a safe, albeit
slow, choice would be to select the same machine that is currently running BONeS and ISE to also
run the simulation.

7. Ensure that the pool selected is the BONES_MPI Pool 1.3.
8. Set TSTOP to 1,000,000. This will prevent the Simulation Manager from stopping the simulation

before the MPI program has finished executing. If this value is not high enough, increase it. Note
that doing this will render the progress indicator during simulation useless.

9. Once all options in the Run dialog box have been set correctly, start the simulation. If there are
questions about various options, refer to the BONeS documentation.

A.2.5. After the Simulation Has Started

1. As the simulation runs, printf statements from the parallel program will display in the respective
iteration windows. The total execution time is best reported by using timing functions from within
the parallel program as if being run on the actual hardware. This method will also make the code
more useful and portable.

2. If profiling was selected earlier in the ISE setup, a freeware program called Upshot will now be
spawned. The computation and communication patterns recorded in a log file during the
simulation are displayed.

A.2.6. Tips for Advanced Users

• The ISE and BONeS may be run on separate network machines by activating xhost on the local
machine and setting the DISPLAY environment variable correctly.

• If too few iterations were started by the ISE and BONeS hasn't started yet, additional process iterations
may be started by hand. The bmpi program was actually called repeatedly by the ISE but can be
executed by the user. Type bmpi at the prompt for a list of run-time options.

A.2.7. Requirements of the MPI program

• The program should not perform any operations that need to be timed before the MPIJnit or after the
MPI_Finalize functions have been called.

• Not all of the functions included in the MPI specification are supported. A list of supported MPI
functions can be found in the appendix.

A.3. Implementation Guide

This section introduces the information required for a user to integrate a network model into
the ISE. It also serves as an introduction to the BONeS/MPI environment and what tools it
offers.

A.3.1. Portal

The BONeS/MPI Portal (so named because it is the doorway in BONeS to the MPI software
previously described) may be thought of as the application layer of an OSI network protocol
stack. It essentially offers services to MPI processes. Since MPI offers error-free
communication, it is the job of the modeler to provide a fully functional protocol stack including
segmentation and reassembly (if needed), error handling, and flow control. Without these
components MPI will certainly fail. This is especially true when interfacing the ISE to a lossy

99

network such as ATM or when modeling networks with fault-injection. Figure A.9 below shows
a protocol stack for a bidirectional array and next to it a protocol stack of the SCI network.

JBPE [MKMIedJ

aie)^8tt,mtaSn(d^witocltolnTOf^!W:Pj»t«tlnkt«y»r",
AS dependencies present

File Et» View !

•BONeS>lf>|iSCI; feeViß"»K ÄMved ««Ited;:

Figure A.9 - BONeS/MPI Portal over Two Network Protocol Stacks

There are essentially three functions of the BONeS/MPI Portal: scheduling events,
performing actions, and queuing and matching incoming messages to process requests. Each
time an MPI process requests a transaction with the BONeS/MPI Portal, it sends both the
transaction type and when to schedule the transaction. BONeS then schedules the action to occur
with a timer. The portal currently can schedule nine types of events: sends, receives, finalizes
(shutdown network), aborts (abort connection and close network), request of network clock time,
probe (check queue and wait), iprobe (check queue and return), barrier time (useful to setup up
real-time systems), and trigger network parameter. This does not include other services offered
for MPI processes, which are macros of these network services (including some important calls
such as MPI_Barrier).

The actions correspond to each of the scheduled events. The two main self-explanatory
services to the network are sending and receiving. A few of the actions are not supported by the
MPI standard and thus require some explanation. The first of these is the barrier time
mechanism. As mentioned previously, this helps schedule events at certain event times for real-
time systems. For instance, the event may be the generation of a new data stream from a data
acquisition board. If these occur at regular intervals the time may be clocked by the network
interface. The other BONeS/MPI-unique function is Trigger Network Parameter. This function
may be useful in setting up multiple pseudo-iterations within the same program and within the
same BONeS iteration with different network parameters (provided that the BONeS parameters
are actually memory arguments). For instance, the user may want to run the different pseudo-
iterations at different network bit rates. The trigger network block actually sends a signal to the

100

system layer where the "BMPI Functions" block is located, so the parameter change blocks must
reside in the system view. These functions are discussed in further detail below.

The three actions receive, probe and iprobe each access the portal's input queue. This set of
blocks matches incoming messages to those that MPI is trying to receive. It also supports
wildcards such as MPI_ANY_TAG and MPI_ANY_SOURCE. Figure A. 10 below shows the
innards of the block that supports these services.

Figure A. 10 - Portal Input Queue

The system block (shown in Figure A.l 1 below) includes the mandatory system-wide block
that contains four functions: initializing of the communication link (which communicates to the
processes), receiving the signals for the trigger parameter change (a total of three), shutting down
the BONeS simulation (via MPI_Finalize or MPI_Abort from the MPI processes), and lastly
speeding up simulation time by skipping over periods with no network traffic. This block is
required in the system diagram. Without it, the communication link to the processes will not be
made. The other three functions are convenience features. The block that initializes the
communication link spawns off the remote relay program as discussed above. Recall that the
trigger network parameter mechanism may be used to change an argument or the state of a
BONeS simulation. When an MPI process calls MPI_Finalize, it sends a signal to the system
functions block. Once each node has sent this signal, the simulation will be terminated. The
MPl_Abort call will also be supported in the future to shut down the ISE environment. The Fast
Forwarding mechanism is the most difficult to integrate into a network model but is optional.
The user may integrate a fast forwarding device into the model to speed up simulation. The
network accounts for all of the MPI messages in the network by counting all of the messages
leaving and all of the messages that have returned. Broadcast messages are also accounted for by
incrementing the counter by the number of nodes (less one because the sender does not receive
the message). To integrate this capability into a model, the user may use a linked piece of
memory called "Global_Next_Event_Time". When there is nothing to send on the network, this
variable is set to a real time of infinity (actually 10000.0 which is much longer than any
simulation is likely to be). When a message is on the network this value is set to 0.0. The value
of this variable may be used as a gate from a timer. If the user requires a signal to be sent from
this block after the simulation has been disabled for a period of time, the conclusion should be
drawn that a "Named Goto" block (one of BONeS core primitives) with a string argument of

101

"Start Clock". When the BONeS_MPI portal sends a new message onto the network, a signal
will be generated to these named Goto blocks.

File Edit View Select Add Connection .Tods Options Help

^BONeSjyip|.5<Jpinp6 Nodevftg"was läst^satfed «ie^fled.

_•

Figure A.11 - System View for an ISE-Capable Network

A.3.2. Hooking up the Portal

Currently there are two versions of the BONeS_MPI Portal function and both are identical
except for the connection interface. The reason for two portal versions arose because there was
want of a BONeS_MPI Portal that operated in an HCS standardized model called SCALE GMP
(Scalable Coherent Architecture Latency-hiding Environment, Generic Message Passing). The
interface in the SCALE GMP version is based on signaling principles likely to be implemented in
real hardware. Figure A. 12 below shows both the SCALE GMP version "SCALE BONeS_MPI
Portal vl.3" and the older version "BONeS_MPI Portal vl.3". It is recommended that the
modeler use the SCALE GMP portal since it is more powerful and generic. However, both are
discussed for completeness.

102

IP» jm flf j*Kt «d jira» To« gpma

MMKMWi

Figure A. 12 - Internals of the Two Versions of the Portal

The original, BONeS_MPI Portal vl.3, has only four ports: a send port, a receive port, a
network-reject port, and a network-ready trigger. This protocol does not allow for rejections from
the portal layer. If it is unable to receive it will simply drop the incoming data. Unfortunately,
this situation causes a lockup. However, most models will not be able to handle a reject anyway
since reverse flow control would be required. The send port works in conjunction with the
remaining two ports: network-reject and network-ready. The network can reject incoming
messages and send them back into the portal. The BONeS_MPI portal layer is then stalled until a
network-ready trigger is received from the lower layer. This implies that the network model must
ensure that a ready trigger is sent out if a rejection occurs. The data ports (all but the network-
ready trigger port) use the structure "BONeS_MPI Data Packet". The fields of this data structure
are shown below in Figure A. 13. The user may parse the five fields to pull off any information

103

that may be needed by the network model such as destination and data size. However, the entire
data structure must be encapsulated into a "root-object" data field before moving it through the
simulated network. This is because the receiving node must move the information back into the
portal layer the same way it came out. For further information on BONeS data structures and
data types, please see the Designer Reference Materials.

MM« 'T"l'"":' """""' ixmjti lABtiAt. lim
File Edt View Select MA

';W>:
MaSiM'-s ■■

Source

•tWTEOEI!.«
SJNIEOER-5.
■'WÄGBK.
MINtBägR«

p«tlf*(|*feV«»w. WTiViCJOli: ;
CrMltanTIrM, . SEM. '

V{-wlofisr;»ttiTiitii)

V#Äf^;:«lt*«V)-"
,H>**»»«MI>»»)

<-lnMty.-.ln8ji»|i)

CSb" (Comrjcsrle)

Mwufaga

Fie Edit View Select. Add Hdo

«**■•: ,.&m-<
p«teMdlon

■Sourt»-' :

.turreGSBi.v.r-k'--
i':RÖbfi08SECT::

wrassR ■
.'.»HBÄ-JV";"''

ITS*« öf öwjon .R£«t'

,R,i4Wiri|ls9 i'. '£;
,Hriterl»,*ft(ln%J*

BSE (Composa)

Figure A. 13 - Portal Data Structures

The SCALE BONeS_MPI Portal has a much more flexible and logical interface. It consists
of six ports: a send port, a receive port, and two sets of RTS/CTS (Return to Send/Clear to Send)
connections. The BONeS_MPI portal will query the lower network layer if it is ready to receive
a message with an RTS signal. If the layer is ready to receive, it should send a CTS signal back
up to the portal layer. This protocol is non-polling so if the lower layer is not able to accept a
message it must send a CTS signal to the portal whenever it is ready to receive (that is, if it
received an RTS while it was busy).

Receiving data and sending into the portal layer is more flexible. It does work with the
standard protocol (described above) but allows for a couple other alternatives. The RTS input can
accept multiple outstanding transactions. In other words, the BONeS_MPI portal will remember
how many times a request for a clear to send signal (RTS) arrived. Whenever there is buffer
space available the portal will try to return outstanding RTS signals. Also, the user is not
restrained by the protocol and has the option to ignore the RTS/CTS protocol and simply send
incoming packets right into the portal layer. If the network model does not support reverse flow
control then incoming packets might as well be streamed right into the portal queue, which is
relatively large. However, as mentioned earlier with the older portal version, if the queue is
filled, data will be dropped, eventually causing lockup. The data ports use the SCALE GMP data
structure, which has five fields shown above in Figure A. 13. The user must encapsulate this
structure into a data field in the same manner described for the original portal version. The data
size field in this structure is in bytes, and it must be extracted and used by the lower layers for
proper network timing.

A.4. Currently Supported MPI Functions in ISE

MPIJnit

MPIJtaitialized

MPI_Send

MPI_Recv

MPI_Barrier

MPI_Barrier_time (not part of MPI standard)

104

MPI_Reduce

MPI_Allreduce

MPI_Bcast

MPI_Comm_rank

MPI_Comm_size

MPI_Get_processor_name

MPI_Get_count

MPI_Attr_get

MPI_Error_string

MPI_Error_class

MPI_Wtime

MPI_Wtick

MPI_Probe

MPIJProbe

MPI_Finalize

MPI_Abort

MPI_Trigger_network - can dynamically change BONeS parameters (not part of MPI
standard)

MPI_Force_delay - adds a specified number of seconds to the process's copy of the
simulation time (not part of MPI standard)

No time calls - for profiling (Upshot) or for selectively placing communication overhead in
program, a no time call for each function (not part of MPI standard)

A.5. Stages of ISE Development

Version 1.0 - Preprocessing (Static) Timing

Version 1.1 - HWIL, extended function list, Dynamic Timing

Version 2.0 - Simulated Processors (SWIL)

Version 1.2 - Distributed BONeS and Processes across Sockets, Upshot (HWIL)

Version 1.3 - Multiple Iterations

A.6. Other SCALE BONeS/MPI Notes

Broadcast - BONeS_MPI writes "-1" as a global address, for networks without broadcast
capability this issue may be resolved with a block called "Beast -> Mcast" that breaks the
broadcast into separate sends.

Addressing Names - Nodes may be manually set to an address number, or BONeS includes
the Address naming primitives which randomly assign a number to each node. BONeS/MPI

105

supports both and in either case, the rank is associated to the actual node address. If using
BONeS Addresses see "Create Global Node List" below.

Create Global Node List - If using BONeS Address Names, a block called "Create Global
Node List" must be in the system block diagram. This scheme is complicated and not suggested.
It is also untested, so users may proceed at their own risk.

Other notes: the most practical of all MPI functions are supported in version 1.3 of
BONeS/MPI. However, some key pieces are missing such as MPI Communicators. Also, as of
this moment, there is some ambiguity of the functionality ofMPJJBcast. As far as we can tell;
however, BONeS/MPI will follow the standard (and perhaps let the user get away with some
tricks). Also for those who are intending to port their SCALE SHM model to BONeS/MPI, a
conversion block has been built from "SCALE GMP -> SCALE SHM" for an SCI model;
however, some adjustments may need to be made for other shared memory networks.

A. 7. Sample Remote Host File for ISE

The following .rhost file shown in Figure A.3 has been provided as an example to
demonstrate the format that should be used to take advantage of the ISE machine categorization.
If the following format is not used, the ISE will simply not use multiple categories and will place
all of the machines in a single category. Essentially, category names are designated in brackets
immediately preceding the machines that fall in that category or type of machine. Note that this
format should not affect the normal operation of the .rhost file with any other shells or programs.

[Sparc-10]
eagle markwell
eagle
[Sparc-5]
banshee
crusader
[Sparc-20]
blackbird
intruder
[Ultra-1 Reserved]
falcon
[Ultra-1]
cutlass
rapier
[Ultra-2]
dagger
dart

Figure A. 14- Sample. rhost File. This file format should be used to designate categories that the ISE can
recognize to aid the user in choosing appropriate machines for process simulation.

106

Appendix B. Extensions to Parallel Conventional Beamforming

B. 1. Extended Work in Time-Domain Beamforming

To extend the work completed on time-domain beamforming in the first year of this project, a
number of optimizations were implemented. Two non-linear enhancements were added to the
basic time-domain delay-and-sum beamformer in an attempt to bring its capabilities up to that of
the FFT beamformers developed above. In addition, a new decomposition for the time-domain
beamformer, the butterfly, was implemented and tested. Lastly, an algorithm written was written
to sit on top of a Global Data Scope system.

B.1.1. Non-Linear Algorithmic Enhancements for Time-Domain Beamformers

The time-domain beamforming algorithm is of lower algorithmic complexity than
comparable frequency domain algorithms. However, the amount of data that the time-domain
algorithm requires is many times that of the frequency domain. Thus, in a parallel-distributed
system such as the Fault Tolerant Distributed Parallel Sonar Array (DPSA), the communication
cost overshadows the computational requirements. This section introduces two non-linear
techniques to lower the data requirements for a time-domain beamformer.

The two non-linear techniques will be referred to as "Circular Shifting" and "Fractional
Steering." The amount of computation is minimal for the Circular Shifting method and perhaps
may even approach zero as will be explained in further detail. The Fractional Steering method is
essentially a non-linear method of increasing spatial resolution without having to resort to
interpolation techniques. It uses a well-known graphical interpolation technique introduced by
Bresenham. The advantage of this technique is no increase in computation, which cannot be said
for interpolated techniques.

The results of these methods are surprisingly accurate and offer tremendous savings to
communication cost and simple data handling. Some spatial results are shown for conventional
techniques in both domains and in comparison to the non-linear algorithms.

Conventional beamforming arrays are devices with a number of "dumb" nodes connected to
an expensive front-end processor. This model is both inefficient and non-fault tolerant. It is
inefficient in terms of energy and time, and the single front-end provides a singe point of failure.
With the advent of affordable microprocessors parallel computing is coming of age. In naturally
(or embarrassingly) parallel systems, conventional computing techniques are illogical and
impractical. One could analyze the slowdown in moving to a Von Neumann "sequential"
paradigm. The DPSA is such a system.

The DPSA also has some physical limitations. The device must be autonomous, self-
powered, and have an expected useful life of over 720 hours or 30 days. It must also be made up
of small nodes powered by single C-cell sized batteries connected in a linear fashion. The power
limitation is the greatest obstacle in creating the DPSA and limits both the computational power
of the nodes and the communication network speed. Observing this, the DPSA must be outfitted
with the most efficient hardware implementation along with an efficient beamform algorithm
solution. This section addresses the latter for the conventional time-domain beamforming
technique.

107

B. 1.1.1. Circular Shift Method

The Circular Shift method is a means of reducing the time-domain beamform data space by
drastically reducing the heights of sampled sequences. The time-domain data space increases as a
function of 0(M2) as opposed to the frequency domain which increases with 0(M) (recall, M =
number of nodes). In other words, doubling the number of nodes on an array will double the data
space of the frequency domain algorithm but quadruple the data space in the time domain. Also,
doubling the resolution of the data space will increase the data space size by NM in the

frequency domain and NM + in the time-domain (recall N = sequence size of one

node). To explain this clearly we will revisit the conventional method of time domain
beamforming.

The conventional time domain beamforming technique is simply a delay and sum of time
sequences sampled by nodes in an array. In this case we will assume the array is linear equally
spaced nodes. The delay and summing of these sequences is a means of amplifying or attenuating
signals in a spatial conical field. The delay of the sequences determines at which angle the array
is being "steered". Signals approaching at the steering angle will be amplified while others
outside of the "beam" will be attenuated to some degree as shown in Figure B.l. A single
sequence might look like the one shown in Figure B.2(a). If the spatial field is made up of a
single monochromatic source, we expect to have a similar sequence recorded by all of the nodes
but shifted in time, as shown in Figure B.2(b). The delay and sum of the data space matrix

sweeps across a vector space of N + — - (recall that S = number of steering directions)

which implies a total data space of NM + ^—^. Notice, however, that it is possible to

have an extreme amount of redundant information if the signal is periodic. This is the
fundamental theorem of the circular shift method: If signals are periodic (to some degree this can
be approximate), the data space of the time-domain beamform algorithm may be reduced from of
.... MS{M -l) ,ri, _
NM + to just NM . The data space is reduced in size to the frequency-domain

beamformer's, assuming the frequency domain algorithm is limiting the lowest frequency to
maintain a complete cycle. The shifting of the time-domain sequence may now become a circular
shift and thus approximate the true shift.

108

120 ^~

90
1

^^ 60

0.8

/ o.e\
150 /

\ • 04 : /

\ 30

/ ./^VÄ
0

210 \ ^
' •

'\\y

/ 330

240 ^-»- ""^^ 300

270

Figure B.l - Beamformer Response versus Azimuth

Time Sequence of Incoming Signal (Node 0) Incoming Signals Showing Phase Differences (Nodes 0-3)

ar\/\AAAAAAJ
200 400 600 800 1000

AAAAAAA71
200 400 600 800 1000

atAAAAAAA71
200 400 600 800 1000

k/\AAAAAAl
200 400 600 800 1000

(a) (b)

Figure B.2 - Typical Incoming Signals

This method requires two modifications of the conventional approach. The first modification
is to create a circular shift of the time sequences. This is a simple (modification) improvement
and contributes little added complexity to the system. The second modification may add a
significant amount of complexity to the algorithm but not necessarily affect the execution time
that much. For the circular shift method to work the sequence size N or periodicity of an
incoming signal must be known. The complexity of this operation, due to an FFT and search, is
approximately N log 2 (N) + N .

The method developed for the test programs may be thought of as an auto-beamform solution
on one node's data set and is of higher order complexity than an FFT based solution. The
procedure for "cycle_check" is developed further in the next sub-section. The alternative of this
method is to perform an FFT on the incoming data samples and search for the highest peak and

109

approximate the number of samples in one period. Figure B.3(a) and Figure B.3(b) below show a
sequence with redundant information and the resultant reduced signal after applying the
"check_cycle" program, respectively.

Many Periods of Incoming Signal

200 400 600 800 1000

Approximate Sample Period of Incoming Signal

(a) (b)

FigureB.3-IncomingSignaland "CheckjCycle" Output

This method is surprisingly accurate (if signals are monochromatic) and in some cases
introduces very little error to the conventional beamforming output. This is shown in Figure B.4
below. Introducing white noise (wide-sense stationary) into the system has little affect on the
algorithm's performance. We may also try more complex signals with multiple frequencies
across the spatial field and the results still seem to be valid (Figure B.4).

110

(a.l) (a.2) (a.3)

■Gl
Jill ill D^^HH^^^^^BI

(c.l) (c.2)

Figure B.4 - Circular Shift Method Results

(c.3)

B. 1.1.2. Cycle Check Procedure for Circular Shifting

In order for the Circular Shift method to minimize error, a procedure may be periodically
executed to acquire the approximate frequency of an incoming signal. Because incoming signals
are likely to change slowly, the cycle test routine may be called infrequently saving execution
cycles. However, it is likely to cause problems if the acoustic field is dynamic. A simple
procedure was created to extract this information. The efficiency of this procedure was not
optimized. In fact, this information could certainly be extracted with an FFT and search
algorithm, which is of lower complexity than this method although perhaps less exact.

As described earlier, the method uses an auto-beamform technique. A cycle period is
estimated (starting with the smallest cycle period possible of 2 cycles: the Nyquist frequency).
The total number of cycles in the sample set are then added and the power of the resulting signal
is found. If this power is greater than that of the previous cycle count, the new cycle count is
recorded. A number of signals were applied to this algorithm to test its validity. Signals were

111

applied which had multiple frequencies (and thus had a complex cycle), such as broadband
signals and signals with frequencies that were not integrally related to the sampling. The outputs
in Figure B.5, below, show many cycles of the input signal (left plots) and the resulting signal
when truncating to its approximate cycle count (right plots). The first three cases perform very
well and find the cycle count to within an error of a couple of samples. However, the last case,
which is made up of three signals at 36, 72, and 90 Hz, breaks down, finding the half-frequency
instead of the true full cycle. However, applying cases like these into the beamform algorithm do
not seem to make a difference and results still seem to exhibit little error.

Many Periods of Incoming Signal

100 200 300 400 500

Approximate Sample Period of Incoming Signal

20 40 60 80 100 120

(a.l) (a.2)

Many Periods of Incoming Signal

200 400 600 800

(b.l)

Approximate Sample Period of Incoming Signal

150 200

(b-2)

112

Many Periods of Incoming Signal
i i i

200 400 600 800

Approximate Sample Period of Incoming Signal

50 100 150 200

öLD (c.2)

Many Periods of Incoming Signal Approximate Sample Period of Incoming Signal

200 400 600 800

(d.l) (d.2)

Figure B.5 - Experiments with the "checkjcycle" routine.

B.1.1.3. Fractional Beamsteering

Fractional Beamsteering is an alternative of time-domain beamforming with interpolation. It
is based on Bresenham's algorithm (described below) for drawing lines on graphic displays. By
fractionally steering across the data matrix, better resolution can be achieved at the cost of
increased distortion. However, the distortion is a function of the number of nodes in the array.
More nodes imply less distortion. This is convenient since large arrays will have a bigger
communication and data-handling problem. Fractional Beamsteering has a limit on the number
of fractional directions that can be achieved. The maximum number of fractional resolution
angles is equal to M -1; therefore, an eight-node array can achieve a fractional resolution of
seven times its natural capacity, and a sixty-four-node array can achieve sixty-three times its
natural capacity. Of course, the larger the number of fractional angles, the more distortion there
will be in the final signal and the more computation is required. However, this is a better
alternative to interpolation with large arrays since it achieves the same result: a pseudo-increase
in angular resolution. This is because interpolation requires a large amount of computation
whereas Fractional Beamsteering requires considerably less.

113

The method utilizes Bresenham's algorithm to do non-linear shifts across the data matrix.
Notice in Figure B.6(a) that in conventional beamforming, the summation reduction across the
data matrix requires node 2 to step in incremental amounts. This requirement forces nodes
further down the array to jump with great hops if the number of steering directions is sufficiently
large, and the last node down the chain to shift at S(M -1) wide (where S is the steering angle
offset). For a 64-node array, this implies that the 64th node will have to jump down to its 63rd

sample when beamsteering one increment to the left. At two increments to the left, the 64th node
must start the beamforming process 126 samples down. This is easily shown to blow up when the
resolution required is very high. The data space becomes very large. Fractional Beamsteering,
with greatest resolution, does not require node 2 to step in incremental amounts, but instead
requires the furthest node down the array to jump in incremental steps. Thus, the line of
incidence is interpolated by Bresenham's algorithm, again at the cost of some distortion.
However, this distortion may be minimized in large arrays by requiring the furthest node to make
a longer hop. For instance, in a 64-node array the hop increment can be set to 7 thus increasing
the resolution by eight while minimizing distortion.

Conventional Beamforming

Node 0 Node 1 Node 2 Node 3

Fractional Steering Beamforming

Node 0 Node 1 Node 2 Node 3

=!

O Steering Angle 1

9 Steering Angle 2

9 Steering Angle 3

(a) (b)

Figure B.6- Fractional Steering

The results of this method are surprisingly accurate even for incremental hops at the furthest
node in the chain and for small networks. Figure B.7(a)-(c) below shows the plots of the
Fractional Steering method and Fractional Steering and Circular Shift together for the same
inputs as shown in Figure B.7(a)-(c). Notice that the distortion is much greater; however, the
actual system will perform better since it will have many more nodes. In this case there were
only eight nodes and the maximum data compression was applied by reducing the amount of data

114

by seven. Also note that because there is less data the signal seems to have less dB gain over the
noise. Distortion and lower signal gains are two drawbacks to the Fractional Steering method.

(c.l) (c.2) (c.3)

Figure B.7- Fraction Steering and Fractional Steering with Circular Shift Results

Using both the circular shifting method and the fractional steering in concert the
beamforming system saves a great deal in communication and computation cost, so much so that
this algorithm may become a better alternative than the FFT beamforming technique. This is
especially true if the target system requires low communication and computation.

B. 1.1.4. Bresenham's Algorithm for Fractional Beamsteering

Bresenham's algorithm was invented to approximate or interpolate lines across a graphic
display matrix. Since displays have finite resolution, often the lines must be interpolated. The
technique is simple but requires some explanation. First, the axis of control, the "driving axis," is
determined. The driving axis is defined as the axis for the direction in which the desired line has
the longest dimension. In Figure B.8 below, the driving axis is the x-axis (horizontal). The other
axis may be referred to as the "passive axis", in this case, the y-axis (vertical). A pixel is
illuminated if a line crosses its passive axis on the side nearest to the origin of the line. Notice,

115

then, that direction of the line is arbitrary but yields two different solutions. For instance, the
example figure below shows that the algorithm was applied in the direction from (0,0) to (5,3). If,
however, the example was applied from the opposite direction, (5,3) to (0,0), then pixels 15, 14,
8, 7, and 1 would be illuminated. Careful observation shows that this is the exact same line if
turned 180°.

The method uses an error function £ to determine if the true line has passed through the pixel
at the same passive axis coordinate or through the pixel above the current passive axis coordinate.
First the slope m is calculated by conventional algebraic conventions. The slope is added to the
error variable e, and if the resulting value is greater than 1 the passive axis is incremented, and 1
is then subtracted from the error £ and the process continues.

This algorithm can also be solved for non-integral starting and ending positions. However,
for the time-domain beamformer, samples will always be integrals. Therefore, the simple integral
case need only be considered. To maximize the efficiency of this technique the interpolated lines
may be pre-calculated and stored in a matrix.

' (5,3)

(0,0)

11 12 13 14 t
E

1
15 >S

6 7 t
e

1
8 _L y^ 9 10

1 t 2 ./'

T
1

3 4 5

4 -1—*|

Figure B.8- Interpolated Line ofBresenham 's Algorithm [JOY97]

B.1.2. The Butterfly Beamformer

One beamformer of interest is a fine-grained butterfly algorithm. The technique is called
butterfly because it has the same characteristic as the Fast Fourier Transform. This algorithm is
more fine-grained than other previously implemented beamformers such as PBT (Parallel
Bidirectional Time-Domain), a pipelined control parallel approach or GDS (Global Data Scope),
or a coarse-grained agenda parallel approach. The algorithm is optimal for low-latency
computations, however, its speedup is limited by the complexity of the operation.

B. 1.2.1. The Butterfly Characteristic

The butterfly is so named because of the characteristic of its main computation a data parallel
matrix reduction. The reduction is the summing of shifted time sequences into a resultant vector.

116

This vector then may be reduced to a power by taking the square of its terms. The Butterfly
technique then operates in two stages: the matrix reduction, then vector reduction. The matrix
reduction actually performs the reduction of two steering directions simultaneously and for
simplicity finds the complement angles, leaving the broadside-steering direction as a special case.
This process must be performed in a loop until all of the steering directions are complete. Figure
B.9 below shows a flowchart for the butterfly matrix reduction. The odd nodes perform the
matrix reduction of a positive steering beam while the even nodes perform the reduction for the
complement negative direction. The first stage of this operation is the swapping of data between
odd and even nodes. After this stage the odds and evens are completely independent. The
algorithm then follows a recursive structure in which each node sums two vectors, splits the
resultant vector into two half vectors, keeps one half vector and swaps the other with its
complement node. The complement node algebraically is difficult to express but is easily seen in
Figure B.9 as the node to which another is sending for that stage. The operation of adding,
halving, and swapping continues until each node has added its component to a resultant
distributed vector. Note that the data vectors for each node must start as radix 2. The next stage
in this algorithm is to collect both of the distributed vectors and possibly calculate a power for
each. Unfortunately, this stage is a sequential bottleneck which could only be overcome by a
complicated pipelining (control parallel) technique. After the power is performed for each
steering angle the algorithm loops back to stage 1, looping approximately half the number of
steering angles required of the system. Figure B.10 shows the high-level diagram of this delay-
and-sum algorithm.

Figure B.9 - Butterfly Detailed Flowchart

117

Window Multiplication

Matrix Sum

Vector Sum

Loop for each
complement

steering angle

Post Processing

Loop for each
iteration

Figure B.10 - Butterfly High-Level Flowchart

B. 1.2.2. Complexity of the Butterfly Beamformer

The Butterfly Beamformer has the limitation of being too fine-grained. Because of this
limitation, the communication cost becomes a degrading factor to its performance. Analyzing the
stages of the Butterfly the complexity of the algorithm may be mapped with the following
equation:

°PS b«tterfty_convenlional(s .N>M) : = - = + t ^„^8 ,N) + t pickangle(S)

Recall M = Number of Nodes, N = Number in Time Sequence, and S = Number of Steering
Directions.

This equation is explained in further detail in the section on performance prediction. It is
easy to pick out the sequential bottleneck terms of this method. The beamformer is optimized for
low-latency but not high throughput, whereas the pipelined beamformer is optimized for high-
throughput but arbitrary latency. Lastly, the GDS time-domain beamformer system (discussed
next and in the performance prediction section) is superior in both regards offering both lower
latency and high throughput. Comparing the Butterfly to the other two time-domain beamformers
shows that it is of higher order complexity. Worse yet is its inability to take advantage of data

118

compression with "Circular Shifting" methods (discussed in the previous section). This leads to
very high communication cost. The communication pattern may be written as:

Coimnnug buttcrfly_couvciitional(M-N>S) := * couun(SMN-M-s^ ring(M)) + * comm(S'N-M'E<V ring(M))

The communication pattern is broken up into the two stages similarly to the computational
equations. The first stage is the communication for the butterfly matrix reduction and the second
stage is in collecting the distributed resultant vector to a node or nodes. The communication
complexity is far greater than the pipelined or GDS techniques because there is a tremendous
amount of redundancy of the data for each steering loop. It is likely that storing samples across
steering angles may minimize this communication, however, this adds even further computational
complexity to the system. Besides being analytically studied as higher order complexity, the
algorithm presents itself as highly irregular and is likely to add further complexity when
programmed. Even worse is its limiting fault-tolerance. For the butterfly to compensate for a
failed node would be a programming nightmare and would add considerable latency to the
system.

B. 1.2.3. The Delicate Butterfly

Although interesting as a beamform paradigm, the butterfly beamformer is an unlikely
candidate for the DPSA. The system is simply too fine-grained to be competitive with the
alternatives. Besides being the algorithm with the highest algorithmic complexity, it undoubtedly
has the worst fault-tolerance, making it a delicate system. It does have several advantages,
however. It requires the least amount of memory and theoretically can perform a single steering
angle decomposition better than any other method implemented.

B. 1.2.4. A Global Data Scope Time-Domain Beamform Algorithm (GDS-TDBA)

The Global Data Scope Time-Domain Beamform Algorithm (GDS-TDBA) project is a new
and important dimension in the study of parallel beamform for the DPSA. Although GDS-TDBA
itself is a beamform algorithm, it more generically creates a simulation environment to observe
the subtleties of a real-time environment. The DPSA is an autonomous sonar system that must
continuously sample the environment and reduce this information to a meaningful picture of the
sample space. Operating in such a mode requires that the algorithm pay particular care to the
nature of the system. That is, the algorithm must operate on a set of boundaries which
dynamically change. In addition, the algorithm and the sampling parameters will dictate the size
and performance of certain devices in the system such as memory and the interconnection
network.

The real-time beamform array could be compared to a dataflow architecture in which the
array is silent until data begins to move into the system. This is in contrast to the von Neumann
style programming typical in modern day computers. In systems of this nature, data resides in a
static space and are transformed when pulled into the algorithm. Dataflow is more natural for a
system in which the data pushes itself into a data space, and worse yet, is likely to write over
other data at some determinate time span. In the case of the DPSA, an A/D converter is likely to
be such a device with the possible aid of a DMA (Direct Memory Access) controller.

The GDS-TDBA assumes such a system .and investigates some of the non-trivialities of
operating an algorithm in such an environment. Some of the assumptions of this system include

119

the ability to occasionally drop a sample frame, ADCs which are synchronized within some
tolerance, the ability for the algorithm to ignore synchronization problems, and the inability to
operate the architecture in a collect and wait protocol. Each of these assumptions will be
discussed in further detail below.

a 1.2.5. The GDS-TDBA Algorithm

The GDS-TDBA is essentially a time-domain beamform algorithm that assumes a fully
functional network. GDS-TDBA is meant to be an alternative to Parallel Unidirectional Time-
Domain Algorithm (PUT). PUT was, in contrast, a fine-grained beamformer. However, both
share a common pipelined philosophy. That is, both algorithms attempt to gain speedup by
hiding the latency in sending signals on the network. GDS-TDBA is not a performance study on
beamforming algorithms, but an algorithm to study the complexities in creating a real time
system capable of continually sampling and beamforming. This philosophy of sampling and
beamforming continuously, is contrary to the alternative of a sample, stop, beamform, and sample
continue protocol.

Requestor Server Server Server Server OOO Server

ICN

Figure B.ll - Requestor/Server Paradigm

The requestor is in charge of doling out jobs to the servers. In a fault-tolerant system a server
can become the requestor if the requestor were to fail.

GDS-TDBA uses a requestor server paradigm in which the requestor is stationary. Its job is
to dole out jobs to the servers, collect and sort the beamform data, and perform any post-
processing tasks. Although, it is stationary, fault-tolerance is not reduced if other nodes have the
capability to perform the requestor's duties if it should fail. A more complicated scheme could
use a roaming requestor, in which case the requestor is not really used to dole out jobs but rather
to compile the beamform data. Figure B.ll above shows the generic structure of such a system.

GDS-TDBA is a low-latency algorithm due to latency hiding. In most beamform algorithms
the processing node needs to first collect samples from an array of nodes through some
interconnection network (ICN). GDS-TDBA assumes that the network can continuously feed
data from all of the other nodes in real time without overloading the network mechanism.
Therefore, when a node is asked to produce a beamform result, the data is already present in the
node and reduction of a matrix field can occur immediately. In other algorithms the node must
wait large periods of time while samples are gathered from its local analog to digital converter
(ADC) and other nodes. The feasibility of placing this much traffic may be analytically estimated
with the following:

120

™ „„ . 31 destination packets 64 bits 1000 times ,.,,,
traffic = 32 nodes - = 64Mbps

nodes packet second

Equation B.l

This equation assumes a 32 node array, a 64 bit packet (including package type, source,
destination, sample, iteration, and routing/network overhead), and a sample rate of 1000 Hz. A
64Mbps network is feasible but not under the low power constraints of the sonar array. However,
using a broadcast send would lower this traffic to 2 Mbps, which is certainly feasible. More
importantly, the broadcast network is scalable as well for larger arrays.

B.1.2.6. GDS-TDBA Memory Matrix Solution

GDS-TDBA requires that all of the nodes operate in a synchronized fashion with moderate
precision. Assuming this, the protocol for gathering data is simple. Each node holds a large
matrix and an array of pointers to this matrix. The matrix is 2-dimensional with each column
belonging to a node number and each row holding the most recent transducer sample. The
pointer field array holds a pointer for each column or node. When a sample is converted locally
or a sample is received from the network it uses the pointer to find its destination in the matrix.
Since there is undoubtedly some time delays between each sample, the data fills the matrix in a
sweeping fashion much like sprinters on a home stretch. Although the local node is sure to win
each race, the samples when properly synchronized should fill the arrays at approximately the
same rate. In other words, at most one column might be one sample ahead of another. This is a
safe assumption considering the low sampling frequency of the sonar array. Eventually, the
samples will get to the end of the array and must then wrap around to the beginning or first row.
One problem in this type of system is that samples can overwrite data, which may be in the
middle of a reduction operation.

When asked to perform a beamform reduction operation each node must simply locate one of
the pointers of the matrix field and begin the beamforming operation at that point. Memory size
is a critical concern for this type of operation and is dependent on a number of factors, some of
which are known, many of which are not. Using some of the assumptions aforementioned (such
as synchronization), the size of memory (actually the size of each data column) may be estimated
with the following:

length =
steering directions , , „ , .-.
 (number of nodes -1) + normalized beamform time + setsize

, ,. ,, . . time of beamform computation
where, normalized beamform time=

sampling period

Equations B.2, B.3

The setsize variable may be on the order of 64 to 128 samples. The number of steering
directions may be as few as 9, and as many as 181. The normalized beamform time is the least
known variable. This is due to the fact that currently the processor speed, the computational
requirements of the beamform algorithm, the sampling period, the overhead of the network
protocol, etc. will all have a significant effect on the normalized beamform time. In addition, the
algorithm could prioritize the samples that are likely to be overwritten first and thus minimize the
matrix size. A rough estimate of the size of the memory was used to create the matrix for the
GDS-TDBA simulator. Assuming 180 steering directions, 32 nodes, a set size of 128 samples,
and a normalized beamform time equal to the set size, the total column length would have to be

121

3046 samples. The total sample memory space for a node may be a 32 by 3046 matrix. Of
course, the node requires additional memory for computational requirements. Note that this
memory calculation was based on the assumption of a conventional time-domain beamform
algorithm. Other algorithms, especially the frequency domain beamformer or time-domain with
circular shifting, can reduce the size of the memory by the factor jS(M -l), where S is the

number of steering directions and M is the number of nodes.

B. 1.2.7. GDS-TDBA Parallelism

The beamform algorithm used in this section was a simple time-domain conventional delay
and sum. The delays are used to beam steer and the data is reduced into a single array which is
then reduced again into a sum of squares or the beamform power. Figure B.12 below shows this
operation. Parallelism of the array is achieved by each of the nodes operating on the same data
but performing different steering directions. Beamsteering is created by a node reducing the
matrix of shifted sequences. Figure B.13 shows two matrices reduced with a degree of 1 and a
setsize of 8. A node may either steer in a positive direction or a negative direction. If steering in
a positive direction the left most (or largest node number) array pointer is used as a basis for the
matrix reduction. Note that time is flowing down the page so steering positively requires the
furthest sample in time to be at the left most array, this conversely becomes the starting point.
The opposite is true when steering negatively. The steering directions could be doled to the
"servers" from a requestor or each node could be in charge of a certain beamforming direction,
which is hardwired into their logic. The latter would simply reduce the communication
requirements but lessen the fault-tolerance. In either scenario a requestor or master is required to
collect and sort the beamform powers. The requestor, by finding the node that sent the maximum
power, could estimate the source of an oncoming signal. Note that in a fault-tolerant system the
requestor in a requestor/server paradigm as shown above in Figure B.l 1 could be replaced if it
were to fail by any of the other server nodes. This functionality was built into GDS-TDBA by
placing the requestor's address on every request to each of the servers. The servers will always
send to this most recent address. Also, the requestor just like every other node must also contain
a transducer and send samples to each of the other nodes. As mentioned previously, the
interconnection network is assumed to have full connectivity to each of the other nodes and must
be able to broadcast messages to lessen communication requirements.

The GDS-TDBA from an analytical viewpoint seems to have the best characteristic of all of
the time-domain beamform algorithms. Since data is constantly fed to each of the nodes prior to
the beamform request, the second the request arrives, each node responds following a prescribed
agenda (which steering directions to complete). Analytically, the pipelined PBT algorithm and
GDS-TDBA are identical. From a programming standpoint, though, the GDS system is simpler
to implement and therefore, likely to be the superior algorithm. It should be noted at this point,
however, that GDS is not limited to the time-domain conventional beamformers. Any technique
may be employed such as FFT conventional, Matched-Field, etc.

122

Beamform Operations

ooo

Reduce
Matrix 5Xi Reduce

Array i'f

^>
Result

Return
Result to

Requestor

Figure B.12 - Beamform Reduction Process

The beamform reduction operation occurs in two stages. The first stage reduces a large
matrix into an array of summations. The second stage reduces this array into a sum of squares
divided by the array size or power.

Matrix Reduction

I I I I
Reduce
Matrix ".'

0°

Important Pointer
Negative Steer

1

H I 1 Reduce
Matrix

0°

fih
1

Important Pointer Positive Steer

Figure B.13 - Beam Steering and the Reduction Operation

The reduction of each node's matrix depends on the steering direction. A positive steer
requires the left most pointer as the base address, and a negative steer requires the right most
pointer. When a node is asked to beamform, it immediately gets one of these two pointers to base
the reduction operation.

123

B.1.2.8. GDS-TDBA Source Code

The GDS-TDBA simulator was created using MPI standard extensions to the C language.
The program works in a quasi-data flow type system. The data movement controls the tempo of
execution. Both the requestor and servers operate in an infinite loop, and periodically update
their local memories from a sample file. This sample file could have been written into memory as
one large block but again the intention of this project was to attempt to create a real-time system
in which samples are written into memory at a set rate. The rate at which this data is written into
each node's memory depends on a couple of factors. The first is the sample rate. To lessen the
chance of error the user is not able to set the sampling rate of the GDS-TDBA program. Instead,
this rate is read off of the sample files to ensure that both of them are operating under the same
assumptions. In addition the speed of sound and the distance between nodes is also written into
the first lines of each sample file for the nodes to pull off. The second factor that affects the rate
at which data is written into the program is the CLOCK_RESOLUTION factor. A local clock
holds the current clock time and a sample is written into memory after the sample period is equal
to the clock counter minus the last sample time. After the sample is written into local memory,
each node also broadcasts the data sample to each of the other nodes. In the case of the GDS-
TDBA simulator the MPI_Bcast was not used but rather each node sent a direct message to all of
the other nodes. This was due to the limitation of the MPIJprobe routine, which is a non-
blocking test for receives and does not work with the broadcast function. At every iteration nodes
also check for incoming data and incoming requests. The MPIJprobe is placed in a loop and
checks to see if data is coming in of type SAMPLE_PAK. A sample pack holds the latest sample
value and an iteration number. This iteration number is a simple form of insurance to ensure that
samples are somewhat aligned when beamforming. MPIJprobe is also used to search for
messages of type REQUEST. However, an MPI_ANYJ>OURCE flag is used since the requestor
may occupy any address and may change at any time.

Each node may service a number of different requests: reinitialize matrix memory,
beamform, or closedown. The last request is simply a tool for the GDS-TDBA simulator and
would not be present on the actual parallel sonar array. One note about servicing requests, a node
may not service a new request if it is the middle of a beamform reduction operation. It must wait
until it is complete then service the new requests.

Careful analysis was paid to the intricacies of creating a real-time environment in which to
place a beamform algorithm. Parallelism of the beamforming result could be achieved through
many techniques such as pipelining or result parallelism. The particular approach lends well to a
result parallel approach in which every node operates on the same data space but extracts
different information from it, in this case different beam steers. A pipelining approach could
overlap execution of a full beamform solution to increase the throughput of beamform solutions.
However, this would likely increase the size of memory.

Future work will require careful inspection of the least known variable, normalized beamform
time. Through careful modeling of a projected processor and statistics of real beamform
solutions, whether that be adaptive, matched-field, etc., this parameter will become known and
further suggest the boundaries for other devices such as memory size, computational
requirements, modes of operation, etc.

B.2. Extended Work In FFTConventional Beamforming

This section presents work pursued in this project to augment the core results presented
above. First, a new medium-grain alternative is presented. The new medium-grain full-capability
FFT beamformer extends the version presented above by creating a pipeline of communication

124

stages. These two programs will be referred to as the non-pipelined program and the pipelined
program. Rather than sending data to begin a communication stage, then receiving it in the same
iteration to continue the computation, the new alternative begins a communication stage by
sending data to a future iteration and finishes the communication stage by receiving from the
previous iteration. Second, the FFT conventional beamformer programs are changed to allow
measurement of individual sections of the program. The algorithms are split into categories
based on the beamforming functions performed and the categories are analyzed individually. The
execution timings of the individual categories within the beamforming programs allows a better
understanding of where exactly the computational requirements are higher and where parallelism
can be best utilized. This section includes a description of how the categories are defined and
presents the measured execution times by category for the existing parallel programs.

B.2.1. Pipelined Medium-Grain Full-Capability Algorithm

One of the most important limitations of the original medium-grain full-capability parallel
FFT beamformer is the large amount of communication. Because every node must have the full
data matrix to compute any assigned steering directions, the communication is a much more
important factor in execution time than is the case for the coarse-grain algorithm. A new
implementation of this algorithm in which the communication costs are reduced is presented here.

Figure B.14 shows the flowchart for the original algorithm. The FFT and shading factor
multiplications are followed by a communication stage in which all nodes receive the full data
matrix. After this, each node calculates its assigned steering directions then sends the results to a
single collection node. The pipelined algorithm improves upon this procedure by making
pipeline stages out of the computational blocks. The communication between these blocks no
longer occurs within the single iteration. Instead, each communication is comprised of sending to
a future iteration and receiving from the previous iteration. When the nodes have completed the
FFT and shading factor multiplication for Iteration 3, they send out their data columns to the
other nodes. Instead of receiving these data columns (which would require blocking until the data
has propagated through the network), the nodes receive the full data matrix from the columns sent
during Iteration 2 (which has already propagated through the network during the previous
iteration's execution time and has been buffered). Then, the nodes calculate the assigned steering
directions based on the data from Iteration 2. When done, the nodes send the results to the front-
end node for collection. At this point the front-end node does not block to wait for these results.
Instead, it receives the results for Iteration 1, taking advantage of the fact that those results have
had enough time to propagate. Figure B.15 shows the flowchart for this algorithm. The solid
lines and boxes represent the flow of a single data set through the three-stage pipeline. The
shaded lines and boxes show the algorithm operations for other iterations.

125

Figure B.14 - Original Medium-grain Full-capability Network-independent FFT Beamformer Flowchart

Figure B.15 - Pipelined Medium-grain Full-capability Network-independent FFT Beamformer Flowchart

The new medium-grain full-capability program was run over the UltraSPARC-18-node 155-
Mbps ATM testbed with combinations of either 91 or 181 steering directions and either 4, 6, or 8
nodes. The non-pipelined medium-grain full-capability program, the coarse-grain full-capability

126

program, and the sequential program were also run. Figure B.16 shows the execution times for
these programs when the beamformer is steering every 2 degrees and Figure B.17 shows the same
results for steering every 1 degree.

Execution Time (91 directions, 64 samples)

Numtwr of Nodes

Figure B.16 - Execution Times for Pipelined Medium-grain, Non-pipelined Medium-grain, and Coarse-
grain Programs with 91 Steering Directions

Execution Time (181 directions, 64 samples)

Number of Nodes

Figure B.17 - Execution Times for Pipelined Medium-grain, Non-pipelined Medium-grain, and Coarse-
grain Programs with 181 Steering Directions

The speedups for these programs are shown in Figure B.18 and Figure B.19. As can be seen,
the new pipelined program performs better than the non-pipelined version in most cases. The
exception occurs for 91 steering directions and 6 or fewer nodes. In these cases, there is not
enough data that must be communicated to warrant the extra complexity. In order to
accommodate the pipelined communication, the MPI implementation must provide buffering for
the data before it is received. Also, the beamformer is swapped out of the CPU so that the CPU
can handle the incoming transmission. These delays do not overcome the propagation delay
when small amounts of data are sent. In all other cases, the pipelined version performs better,

127

though not by much. This result is also explained by the fact that the MPI implementation must
work harder when receives are not posted before the data actually arrives at the node. In fact, as
the amount of data sent becomes greater, the implementation is put under further difficulty in
managing the communication buffers. It will be seen later (when investigating the individual
execution times of different categories) that the amount of time saved by not waiting in the
receive call for propagation is partially negated by time the send call is flow-controlled and time
the send call spends managing the link. The coarse-grained program still outperforms the
medium-grained programs.

Speedup (91 directions, 64 samples)

B Coarse-grain 2.47

I Medium-grain Non-pipelined 2.36

D Medium-grain Pipelined 2.24

6 nodes

3.28

2.95
2.74

8 nodes

2.98

3.09

Number of Nodes

Figure B.18 - Speedups for Pipelined Medium-grain, Non-pipelined Medium-grain, and Coarse-grain
Programs with 91 Steering Directions

Speedup (181 directions, 64 samples)

6.00 -1

c

1 s - '.y^
o
£ 2.00-

■o

I 1°°
1

Rlaal

4 nodes 6 nodes 8 nodes

B Coarse-grain 2.76 3.95 5.16

■ Medium-grain Non-pipelined 2.61 3.51 4.32

D Medium-grain Pipelined 2.80 3.78 4.43

Number of Nodes

Figure B.19 - Speedups for Pipelined Medium-grain, Non-pipelined Medium-grain, and Coarse-grain
Programs with 181 Steering Directions

These results show that the new version of the medium-grained program can provide an
improvement over the non-pipelined version. The limitation is that the MPI implementation must
buffer considerably more data than any of the other programs. In order for pipelined version to

128

work on the sonar array, a significant amount of memory must be provided. For arrays of 32
nodes or more, this may become impossible. Another requirement that is needed for the
pipelined program to become useful would be a more efficient MPI implementation.
Specifically, the sending node must be allowed to proceed almost immediately after a send call
despite what hang-ups are occurring at the receiving end.

B.2.2. Category Definitions

Eight categories have been defined in the conventional FFT beamformer. Four of these
categories are computational categories for different parts of the beamforming algorithm. Three
categories are for communication. The last category is labeled "Other" and encompasses all the
computation required to implement the program above that required in theory for the
beamformer.

In order to clarify the algorithm computational categories, Figure B.20 shows the original
sequential algorithm flowchart. The first computational category is called "FFT & Window" and
includes the transforms for each node's data column and the multiplications of the data columns
by the node-dependent shading factors. The "Steering Multiplication" category includes the
multiplication of the data matrix by the complex delay factors. This category is represented by
the single "Steering Factor Multiplication" block in Figure B.20. The next category is
"Summation & IFFT," which includes the "Data Column Summation" block and part of the "Find
Signal Power" block in Figure B.20. The last computational category for the algorithm is "Power
Calculation," which encompasses finding the squared absolute value of the data samples and
summing them (to include all frequencies in the directivity plot).

129

Loop
For

Each
iteration

Loop
For

Each
Node

Loop
For

Each
Steering
Direction

1 '
Steering
Factor

Multiplication
4— Loop

For
Each

i ' Node

Data Column
Summation

I
Find Signal

Power

■ a
r

Figure B.20 - Sequential Flowchart for the Frequency-domain Delay-and-Sum Beamformer

The three communication categories are "Sending," "Receiving," and "Barrier." The
"Sending" category includes the time the parallel program spends in the MPI_Send call. This
time includes the processing time required for the MPI implementation to manage its buffers or
other such communication overheads. This time may also include the time waiting for a link to
become free or the time waiting for the receiver's buffer to have sufficient space. The "Sending"
time does not refer to the time the data packet spends on the network. The "Receiving" category
includes the time the program spends in the MPI_Recv call. This time includes the time the
process spends waiting (blocking) for the desired data packet to arrive in addition to the
implementation's overhead. Again, this category is not meant to describe the time the received
data packet had spent in the communication network. The "Barrier" category includes the time
the process spends in the MPIJBarrier call. Since each process in the parallel system must start
each iteration at approximately the same time (to ensure that a process does not get a jump start
on the iteration before the iteration data is supposed to be available), each process issues a barrier
after every iteration. These categories are omitted from the analysis of the sequential program.

The last category is "Other." This category is measured by subtracting the other category
times from the total time of program execution. The "Other" category includes overhead in the
program that is not part of an MPI communication call or of the original theoretical beamforming
algorithm. An example of processing time that gets included in this category is the CPU time
used to calculate the steering direction in radians based on the starting direction in degrees and
the steering direction loop index. Another example is the time required to calculate the
destination and size for a data packet to be sent.

130

B.2.3. Category Performance Results

Each of the programs (including the sequential) has been augmented with short amounts of
code to measure and record the execution time of the categories. In the case of the parallel
programs, each process in the parallel system has its own independent measurements of the time
it has spent in the different categories. For presentation purposes, these independent category
timings for the different processes are averaged into a single set of per-processor category times
for the parallel system.

The execution times for 1000 iterations of the sequential program, the coarse-grain full-
capability program, and the two versions of the medium-grain full-capability programs are shown
in Figure B.21 and Figure B.22.

Average Execution Time By Category (8 nodes, 91 directions)

BOther

D Barrier

■ Receiung

■ Sending

■ Power Calc.

D Summation & IFFT

D Steering Mult.

□ FFT& Window

Sequential Coarse-grain Medium-grain Medium-grain
Non-pipelined Pipelined

Program

Figure B.21 - Execution Times for Sequential and Parallel Programs with 8 Nodes and 91 Steering
Directions

Average Execution Time By Category (8 nodes, 181 directions)

BOther

□ Barrier

■ Receiving

■ Sending

■ Power Calc.

□ Summations IFFT

D Steering Mult.

OFFT& Window

Sequential Coarse-grain Medium-grain Medium-grain
Non-pipelined Pipelined

Program

Figure B.22 - Execution Times for Sequential and Parallel Programs with 8 Nodes and 181 Steering
Directions

131

There are a number of important details to note about the category results. First, the
multiplication of the data matrix by the steering factors is the most considerable part of the total
calculation. This category includes both the multiplication of the data by this factor, but also the
calculation of the factor. This calculation involves several floating-point operations in itself. In
fact, the performance of this category on the testbed was considerably worse than the expected
performance based on the floating-point-operations (FLOPS) prediction models. In the original
programs (before analysis via categories was done), this factor was completely recalculated for
each different sample from each different node. In order to improve the performance of the
category, only the part of the factor that changed from sample to sample and from node to node is
recalculated. In this way, the programs calculate the portion of the factor that depends on node
spacing, sampling frequency, and other unchanging variables and stores this portion in a variable.
Then, when the programs loop for each node and for each sample, the variable is retrieved, the
factor calculation is finished with via only two more floating-point operations, and the factor is
multiplied by the sample. The performance savings this optimization provides are included in the
above figures.

Second, the trade-off between the two communication methods in the non-pipelined version
and the pipelined version are easily observed. In the non-pipelined version, after the
communication has started, the nodes wait to receive the full data matrix. This wait appears in
the "Receiving" category and is significant in the columns of the figures. In the pipelined
version, the nodes do not spend as much time in the receive call because the data has already been
received by the node and buffered. The receive does not need to block until the communication
has propagated; it merely needs to retrieve the data from the buffer. Thus, the "Receive" category
takes less time than it did in the non-pipelined program. On the other hand, the increased difficult
of managing the overlapped computation and communication and the increase in total amount of
pending data in the communication system appears in the form of a longer execution of the send
call. The "Send" category in the non-pipelined program takes less time to execute than the
"Send" category in the pipelined version because the sender is flow-controlled when the
receiver's MPI implementation is overwhelmed. In the end, the execution times between the non-
pipelined and pipelined programs even out (though slightly in favor of the pipelined program).

132

Appendix C. Extensions to Advanced Beamforming Algorithms

C.l. Details of Algorithm Stages

The four stages of the split-aperture beamformer are Fourier Transform, beamform, cross-
correlation, and mapping. Details of these stages are presented here.

C.1.1. Fast Fourier Transform Stage

If cross-correlation is implemented in the frequency domain without performing a sufficiently
long FFT, an undesirable wrap-around effect will occur. This effect is a circular action that
contaminates the original output of the correlation. To avoid the wrap-around effect in the cross-
correlation stage, the input data needs to be zero-padded before the signal is passed to the FFT.
The number of zeros depends on the length of the input data. The discrete cross-correlation
function is defined in Equation C.l where N is the number of samples in x and v.

j AT-1

cxy(n) =—^x(i)y(i + n) n = 0,l N-l
" 1=0

Equation C.l

In the frequency domain, this equation translates to {Equation C.2}.

Cxy(k) = X(k)xY(k)* k = 0,l,-,2N-2

Equation C.2

According to Equation C.l, the length of the cross-correlation result will be N+N-l, which is
the same length as the convolution of the two inputs; therefore, to prevent the wrap-around effect,
x and y should be zero-padded to have FFT lengths greater than N+N-l.

With lengthy FFT sets, the computational cost of the algorithm severely increases. There are
two methods that can be done in the FFT stage to reduce this side effect. One is frequency-bin
averaging, and the other is ignoring the wrap-around effect. The frequency-bin averaging
technique involves taking the average value between several consecutive FFT samples, thus
decreasing the total number of FFT samples. This procedure creates a FFT sample set with fewer
samples, and additionally, can make the number of FFT samples less than the sample length of
the original time-domain representation. This method is very useful for beamforming algorithms
that use the Cross-Spectral Matrix (CSM), such as the adaptive beamforming algorithm explained
later in this document. Ignoring the wrap-around effect is also possible because we are only
interested in the small amount of time delay in the cross-correlation at each steering angle, and
the wrap-around effect starts occurring for large time delays. In the final stage, the mapping
process, we can discard the corrupted samples and the final output remains correct.

C.1.2. Frequency-Domain Beamforming Stage

Frequency-domain beamforming in SA-CBF is basically the same as single-aperture
frequency-domain beamforming except the phase centers of each sub-array are considered. In

133

this stage, the plane wave replica vector, vjm, multiplies with the input transformed data; hence,

the input data of node m is steered to the specific direction; in relation to the phase center. The
phase center is the reference point used to calculate the cross-correlation. The replica vector is
defined as vjm = e°"lm , where tjm, Equation C.3, is the relative time delay between the phase

center (Equation C.4) and node m. To get the linear time delay, tjm , we need to steer the angle

nonlinearly in constant increments of sin(6). In the equations below, rm is the node position,
csound is tne sPeed of sound in water, NFk is the first index number of sub-array k, Nu is the

last index number of sub-array k, Nk is the number of the nodes in sub-array it and 6sub ■ is the

steering angle of the subarray.

7;„ = jm

sin6„,fc;X(rm-cJ_ djt

"sound

jm

'sound

Equation C.3

1 Ä
it = S rn,

iyk m=Nn

Equation C.4

o o o node index

Figure C.l - Geometry of the sub-array elements

If we properly steer the beamformer to an incoming signal, the multi-channel input signals
will be amplified coherently, maximizing power in the beamforming output; otherwise, the output
of the beamformer is attenuated to some degree.

Unlike the single-aperture beamforming algorithm, the Split-Aperture algorithm does not
need to steer at every individual desired angle. The cross-correlation causes some redundant
information between the adjacent steering angles so each angle generates a range of the time

134

delay plot. The number of output bearings is two or four times the number of beams that are
formed at each sub-array because we can use x-interpolation to increase the resolution or the
output. The t-interpolation procedure will be explained in the mapping process stage.

C.1.3. Cross-correlation Stage

Once we complete the frequency-domain beamforming for each steering angle, cross-
correlation is used to detect the time delay between the two phase centers. The maximum peak of
the cross-correlation indicates the time delay of the two beamformer outputs. Additionally, the
time axis of the cross-correlation can be transformed to an angle axis by the simple geometric
transformation in Equation C.5. Figure C.2 helps explain the derivation of this equation. Note
that tc is the time-axis value of the cross-correlation, dn is the distance between phase centers,

and 6j is the corresponding angle of the final beamforming plot.

0j = arcsin(—4 = arcsin(TcXC*"""/)
M2 M2

Equation C.5

phase center

Figure C.2 - Geometry of the whole array with 10 nodes.

135

(a) (b)

Figure C.3 - Illustration of the Cross-correlation Correctness. The cross-correlation depends on the time
delay 1C ; (a) is incorrect because 6sub y. * $. and (b) is correct, 6sub . ~ 6j.

We are only interested in the small number of angles or time delays in the cross-correlation
adjacent to the beamforming angle of the sub-array (see Figure C.3(b)) since sub-array nodes are
already steered to the specific direction. Beyond this range of angles (see Figure C.3(a)), the
cross-correlation is not correct so that portion of the cross-correlation must be eliminated from the
final output to maintain correctness.

Before the inverse FFT is applied to obtain the cross-correlation as function of time delay, the
Smoothed Coherent Transform (SCOT) is performed for more distinct shaping of the cross-
correlation. Fundamentally, SCOT sets the magnitude portion of the cross-correlation in the
frequency domain to 1. This procedure results in a better resolution in the output plot because a
wide bandwidth in the frequency domain corresponds to a shaper image in the time domain. This
spectral whitening is accomplished either by taking the instantaneous magnitude of the cross-
correlation in frequency or a running average of the magnitude, which is calculated with the
previous magnitude of the data. Sometimes, a spectral window is used to acquire the smooth
beamforming plot. SCOT weighting is calculated according to Equation C.6 and Equation C.7.

Äm(q) = (l-a)Äm(q-l) + cJfxy\(q)

Equation C.6

The average at time q is based on the average at the previous time q-l. If a = 1, no running
average is done. Finally, SCOT weighting divides the cross-correlation by this factor.

136

/- — *V
t-X)' — •=—

Am

Equation C.7

Finally, a normalizing factor, which is the integral of the magnitude coherence, is used. This
factor divides the SCOT result and ensures a normalized function with magnitude less than unity.

C.1.4. Mapping Process Stage

There are two methods of mapping the two cross-correlations to the final output correlation.
The first method is to apply the weight function to the individual beam correlations with some
overlap of neighbor correlations, and then add up all the cross-correlation values time-by-time.
The weight function center is placed at the steering angle of the sub-array so that we take only the
accurate values from each correlation (see Figures C.4 and C.5).

beam
canter 1

(for steering
angle 1)

beam
center 2

(lor steering
angle 2)

be m

time
axis

beam
center...

center k-1

(for steering
angle k-1)

beam
center k

(for steering
angle k)

Figure C.4 - Weight Functions for Composite Beam Correlation

The other method is x-interpolation, which involves taking only a range of cross-correlation
values, C(TC) where Tc = f\ßsubj ~ 0,) (see Figure C.4 and Equation C.5) and then working

with raised-cosine weights to figure out the interpolated angle from the two adjacent steered
angles. Figure C.5 shows steered angles as long rays and interpolated angles as shorter rays.

#4 - 0.„*_4

e„=e„

#7 - 0JU4_7 <-

interpolated angle

steered angle

> 0,=0„

Figure C.5 - Representation of Beamformer Angles, Steered Angles, and Interpolated Angles

137

In this case, only some range of cross-correlation values are required to calculate the final
beamforming plot. The inverse discrete Fourier transform is then performed using Equation C.8
rather than by using a conventional inverse FFT. This method will decrease the computational
cost of the inverse FFT. Note that in Equation C.8, Af, and M2 are the minimum and maximum

frequency bin numbers in which we are interested, Cm is the SCOTed and normalized frequency-
domain cross-correlation, and A/ is the frequency resolution of the FFT.

4)=Tr-l2Re[Cme'^-1^]
"FFT m=Ml

Equation C.8

The inverse discrete Fourier transform (Equation C.8) is somewhat different in form than the
conventional inverse FFT because we want to detect the time delay between phase centers. The
distance between the phase centers is large compared to the distance between nodes. The cross-
correlation function can detect only one cycle of the time delay for the specific frequency. As the
frequency increases, the wavelength will be shorter and the detectable time delay will be
decreased. Even if we detect some time delay between the phase centers, this value might not be
correct because several cycles of wave have already passed in the distance. To avoid this
problem, we apply envelope correlation in the inverse FFT stage. The basic concept is that a
band-passed signal is demodulated to base-band before taking the IFFT. As can be seen in
Equation C.8, the real value of Cm over some range (M, ~ M2) is used because of the
demodulation and band-passing. The factor of 2 is because we process only the positive
frequency extent.

For the output angle 60Ulj, two correlation functions will be evaluated in the closest beam

pair cL \tj) and cR (?,.). The x-interpolation is defined in Equation C.9 with its component

variables defined in Equation CIO. In these equations, 6L and 6R are the beamformed angles to

the left and right, respectively, of the output angle 60Utj. Using this x-interpolation method, the
final display of the beamformer has less variance in the value as shown in the following
equations.

C(6
0*_;)=VLW+V*(*;)

Equation C.9

L 2
l + cos;r

(eL-e0Ut_^

yj

Equation CIO

hR=l-hL

138

C.2. Computer Simulation

C.2.1. Parameters Used in the Simulation

M=18;

F = 30;

C =1500;

L = C/F;

D = 0.45*L;

FS =12*F;

Numsamp = 128;

Sub = 2;

Fnum = 256;

Nangle =15;

C.2.2. Generate Input Data

Number of nodes

Processing frequency band 0.2F-3.0F

Speed of sound (m/s)

Wavelength (m)

Spacing between nodes (m)

Sampling frequency (Hz)

Number of samples

Number of sub-arrays

Number of FFT points for each nodes

Number of angles steered

One of the biggest problems in the simulation environment is how to generate input data.
Time sequences are necessary for the beamforming simulation. One has to be concerned not only
with the time delay between node data but also with the spectrum characteristics. To show the
broadband property of the beamformer, band-limited plane wave impulses are used as input data.
The band-limited impulse can easily be created in the frequency domain. Figure C.6 shows this
method. First, in the frequency domain, a signal is created that has a constant non-zero value
around the processing band and is zero elsewhere. Second, the inverse FFT in applied to the
frequency data to obtain the time series data. Last, the process is repeated with the node-specific
shift factor for the every node until all nodes' data is created. The time shift in the time domain
can be described as a multiplication with some complex exponential value as shown in Equation
C.l 1. The time delay can be calculated using Equation C.3 above with any phase center, as long
as the phase center is kept constant throughout the data generation process. The result of the
signal generation for the various nodes is shown in Figure C.l.

c[n-nd] <=>e Wd X(ej0))

Equation C.ll

139

1.5

c 0.5

-0.5
-200 -100 0 100

frequency bin
200

0.5

0.4

0.3

ID
| 0.2

| 0.1

0

-0.1

-0.2

"^

-200 -100 0
time

100 200

Figure C.6 - Demonstration of the frequency and time domain relation.

-0.2
150

sample number node index

Figure C.7- Generated Input Data without Noise from 47.8 degrees.

C.2.3. Complex Situations

To this point, we have tested the SA-CBF in the ideal situation: without noise and with one
single source. However, once the sonar array is launched, its environment will be nothing like
the ideal one. To see some other aspects of the algorithm, harsher conditions must be used in
experimentation. One of the important performance factors in the beamformer is the resolution,
that is, the ability to distinguish different sources that have distinct incoming angles.

140

0.8

0.6

0.4

I 0.2
! 0 o

-0.2

-0/4

-0.6

-0.8

1

.(_

i\
-0.5 0

sin(th»ta)
05

(C)

Figure C.8 - SA-CBF Output for Multiple Sources. Each plot has 15 steering angles and 57 output angles.
The signal sources are located at: (a) 10.7°, 47.8"; (b) 21.7°, 47.8°; (c) 33.8", 47.8"; (d) 43°, 47.8".

In the above figures, looking at the beamfbrmer output, one can distinguish the directions of
arrival if the angles are quite far apart, for example Figures C.8(a)-(c); otherwise, the final display
looks like one source (Figure C.8(d)). This result occurs because the split-aperture algorithm
cannot interpolate targets between sub-array steering directions when those sub-arrays cannot
themselves distinguish the targets. The resolution can be improved by increasing the number of
steering angles in the sub-arrays; however, this solution causes an increase in computational cost.

The other side of the performance issue that must be addressed is the noise response of the
beamformer. Due to the sensor and the environment, there will be some noise in the signal.
Lessening the noise effect is accomplished by several techniques including SCOT, running time
averaging, etc. The following results show the beamformer output in noisy conditions.

141

-0.2
150

sample number

-0.-4
150

sample number

sample number

sample number

0 0

(a)

(c)

o o

(e)

(g)

1

o.s

0.6

I04

I 0.2
A J\ A A

\

J u
\

1

0

0

0

I ° I
8 -o

-0

■0

-0

sln(theta)

(b)

sln(theta)

(d)

0
Jln(lhela)

(h)

Figure C.9- Input Signals with Noise and SA-CBF Outputs. In these graphs, the desired signals all have
max value ~ 0.5. (a) signal with white noise (-0.05 ~ 0.05), (b) output of the beamformer, (c) signal with

white noise (-0.1 ~ 0.1), (d) output, (e) signal with white noise (-0.2 - 0.2), (f) output, (g) signal with white
noise (-0.4 - 0.4), (h) output.

142

As more noise is added to the signal, the side lobe heights in the output of the beamformer are
increased. If we do not apply SCOT to the beamformer, the shape of the beamformer results will
get worse. Note that in Figure C.9, the running-average scheme is not used to create the
beamforming results and that if a running average been used, the beamformer contrast would
have been increased, even with severe noise.

143

Appendix D. Extensions to Prototype Hardware Architecture

D. 1. Additional Node Processor Features

The C54 provides seven different addressing modes. They are immediate addressing,
absolute addressing, accumulator addressing, direct addressing, indirect addressing, memory-
mapped register addressing, and stack addressing. Program memory addressing is controlled by
the PC, which is used to fetch instructions sequentially. Conditional branches and repeat
instructions change the PC by adding to or subtracting from the current value through an ALU.
When functions or interrupts occur, the current PC is saved onto the stack using the stack pointer
(SP), and the appropriate routine is serviced. The PC value is restored from the stack and normal
instruction execution resumes.

Several reasons have been presented for using DSP hardware, as opposed to general-purpose
hardware, for increased system performance. However, there are similar characteristics between
the two, such as their use of pipelines that increase performance in both architectures. Pipelines
increase the rate of executing instructions by using parallel hardware to implement different
stages of an instruction. Ideally, pipelines speed up instruction execution by a factor nearly equal
to the number of pipeline stages in the system. This feature may optimize the implementation of
parallel beamforming algorithms. The six-stage instruction pipeline used in C54s allows at most
six instructions to be active in any given cycle of execution. The six stages of the pipeline are:
prefetch, program fetch, decode, access, read, and execute.

The analog interface circuit on the DSKplus provides one channel of voice quality data
acquisition. This acquisition is made possible through A/D and D/A signal conversions with 14
bits of dynamic range for linear resolution; a programmable anti-aliasing filter for optimized filter
implementations; software programmable sampling rates; reset, feedback, loopback, and low-
power modes of execution; an auxiliary input with software-selectability; two-channel analog
input summing capability; and optional master/slave configurability for cascading. The analog
interface circuit connects to the C542 TDM serial port directly. To send and retrieve data from
the TDM port, the analog circuit generates pulses specified by shift clock (SCLK) and frame sync
(FS). A 10-MHz master clock determines the timing specifications for the pulses generated by
the SCLK and FS. The DSKplus host port interface (HPI) is a programmable array logic device,
PAL22V10 (PAL®), that interfaces the host PC's parallel port and the C542 HPI port. This
device allows the host computer to configure the DSKplus to operate in several different parallel
transfer modes, such as 4-bit unidirectional and 8-bit bidirectional schemes. The connection
allows the DSKplus to communicate through the parallel port of the PC [TMS96].

The TDM serial port allows the execution of time-division multiplexing. Time-division
multiplexing is the division of time intervals into subintervals that behave as communication
channels. Multiple devices can be connected to a target device using the communication
channels, thus allowing communication links between devices. The TDM serial port is accessed
through the JP1 header on the DSKplus board. The TDM feature of the C542 processor supports
the network topology that will be used in the prototype architecture.

D.2. TDM Serial Port

As previously mentioned, the eight DSKplus boards will be connected through the JP1
header, which provides the interface to the TDM serial port. The time-division multiplexed

144

(TDM) serial port allows a C54x board to communicate with up to 7 other boards, therefore there
can be up to eight communication channels. Each channel allows for one 16-bit data transmission
from a single device but any number of devices can receive the data.

D.2.1. TDM Serial Port Registers

The TDM port is user controlled through six memory-mapped registers and two other
registers (TRSR and TXSR) that implement the double-buffering capability. The eight registers
are listed in Table D.I. The layout of the six registers accessible by the user is shown in Figure
D.I.

Register Description
TRCV TDM data receive register
TDXR TDM data transmit register
TSPC TDM serial port control register
TCSR TDM channel select register
TRTA TDM receive/transmit address register
TRAD TDM receive address register
TRSR TDM data receive shift register
TXSR TDM data transmit shift register

Table D.l - TDM Serial Port Registers. The TDM Serial Port is controlled through eight memory-mapped
registers.[TMS97A]

• The TDM data receive register (TRCV) holds the data sampled from the TDAT wire (see
Figure D.2).

• The TDM data transmit register (TDXR) holds the data the transmitting device is to
transmit serially through the TDAT wire.

• The TDM serial port control register (TSPC) contains various bits that control the
operation of the TDM port.

• The TDM channel select register (TCSR) is used to specify the time slot each device is to
transmit.

• The TDM receive/transmit address register (TRTA) holds the receive address of each
device and the addresses it is to transmit to during its time slot.

• The TDM receive address register (TRAD) holds various bits regarding the status of the
TADD line (see Figure D.2).

• The TDM data receive shift register (TRSR) controls the storing of the received data
from the TDAT line to the TRCV.

• The TDM data transmit shift register (TXSR) controls the transfer of the transmit data
from the TDXR to the TDAT line.

145

Reg. Add. 15 14 13 12 11 10 9 8 I 7 6 5 4 3 2 1 0
TRCV 0030h Receive Data
TDXR 0031h Transmit Data
TSPC 0032h Free Soft X X XRDY RRDY IN1 INO RRST XRST TSM MCM X 0 0 TDM
TCSR 0033h X X X X X X X X CH7 CH6 CH5 CH4 CH3 CH2 CH1 CHO
TRTA 0034h TA7 TA6 TA5 TA4 TA3 TA2 TA1 TAO RA7 RA6 RA5 RA4 RA3 RA2 RA1 RAO
TRAD 0035h X X X2 X1 xo S2 S1 SO A7 A6 A5 A4 A3 A2 A1 AO

Figure DA - TDM Serial Port Register Bits. [TMS97A]

D.2.2. TDM Serial Port Operation

The TDM serial port is implemented using a four-wire bus consisting of clock (TCLK), frame
(TFRM), data (TDAT), and a wire (named TADD) that carries device address information. The
TDAT line is formed by an external connection of the TDX and TDR signals from the '54x
device. The TCLK line is formed by an external connection of the TCLKX and TCLKR signals
from the '54x (see Figure D.2).

The TADD line is a bidirectional signal that determines which device(s) should execute a
receive operation for a particular time slot. The data is transmitted on the bidirectional TDAT
line. The TFRM and TCLK signals synchronize all TDM port operations and are generated by
only one of the devices in the system.

Only one device controls the TADD and TDAT lines per communications channel or time
slot. The rest of the devices sample these lines to determine if there is valid data to be read by
any of the devices on the bus. The address of the intended receiving device is put on the TADD
line and the data to be transmitted is put on the TDAT line by the transmitting device. When a
device recognizes its address (specified by the lower eight bits of TRTA, RA7 - RAO), it reads
the TDAT line and the data is transferred from TRSR to TRCV. When a valid receive occurs, a
receive interrupt (TRINT) is generated indicating that TRCV can be read.

Figure D.2 - TDM Serial Port Wiring Diagram. The TDX and TDR pins are externally connected to create
the TDATline.[TMS97A]

The source device for the TCLK and TFRM signals is set by the MCM and TXM bits,
respectively, of the TSPC registers. Only one device can have these bits set to 1 at any given
time, usually specified during initialization, and this device provides the clock and frame signals.
The TCLK frequency is one-fourth the CLKOUT frequency, and the TFRM pulse occurs every
128 TCLK cycles. These signals could be driven by external sources if the MCM and TXM bits
are set to 0 on all the devices.

The status of the TADD line can be determined by reading the contents of the TDM receive
address register (TRAD). Bits 11-13 (X0-X2) indicate the current time slot number. Bits 8-10

146

(S0-S2) indicate the last slot number to receive data plus one. Bits 7-0 (A7-A0) hold the last
address placed on the TADD line.

D.2.3. Receive/Transmit Operations

A given device can specify which time slot(s) it is going to transmit in by setting one or more
of the eight bits of the channel select register (TCSR) to 1. Only one device can transmit per time
slot but a device can transmit during multiple time slots.

The lower half of the receive/transmit address register (TRTA) specifies the receive address
of the device and the upper half specifies the transmit address. The receive address is the value it
compares (by a logical, bit-wise AND) to the transmit address on the TADD line during a
transmission to determine if it should receive the data on the TDAT line. The receive address
consists of a 1 in any of bits RA0-RA7 (see Figure D.l) of TRTA. The transmit address, TA7-
TAO, is the value the transmitting device places on the TADD line during a slot that specifies
which devices are to execute a receive.

In the following example, which was adapted from [TMS97A], of a TDM configuration,
eight devices communicate with one another using their respective channel numbers to transmit.
The specific communication pattern is described by Figure D.4. TRTA specifies the receive and
transmit addresses, and TCSR specifies during which channel each device will transmit.

Note that in Figure D.3 each device has a unique receive address (specified by RA7 - RAO);
this allows the transmitting device to transmit to one or all the other devices by simply changing
the transmit address (TA7 - TAO). Each device's channel of transmission is specified in bits 7-0
of TCSR.

TRTA
IS 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Dev. TA RA TA7 TA6 TA5 TA4 TA3 TA2 TA1 TAO RA7 RA6 RA5 RA4 RA3 RA2 RA1 RAO
0 BOh 01h 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 40h 02h 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
2 20h 04h 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
3 10h 08h 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
4 08h 10h 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0
5 04h 20h 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0
6 02h 40h 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
7 EFh 80h 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

TCSR
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Dev. X X X X X X X X CH7 CH6 CH5 CH4 CH3 CH2 cm CHO
0 X X X X X X X X 0 0 0 0 0 0 0 1
1 X X X X X X X X 0 0 0 0 0 0 1 0
2 X X X X X X X X 0 0 0 0 0 1 0 0
3 X X X X X X X X 0 0 0 0 1 0 0 0
4 X X X X X X X X 0 0 0 1 0 0 0 0
5 X X X X X X X X 0 0 1 0 0 0 0 0
6 X X X X X X X X 0 1 0 0 0 0 0 0
7 X X X X X X X X 1 0 0 0 0 0 0 0

Figure D.3- TDM Register Contents: (a) TRTA is the TDM Receive/Transmit Address Register and (b)
TCSR is the TDM Channel Select Register.

This configuration corresponds to the following scenario:

147

Channel TADD Transmitter Device Receiver Device(s)

0 80h 0 7

1 40h 1 6

2 20h 2 5

3 10h 3 4

4 08h 4 3

5 04h 5 2

6 02h 6 1

7 EFh 7 0-6

Figure DA - TDM Communication Scenario

In this example, it can be seen how any number of devices can receive data during any given
time slot. The broadcasting capability is an important feature in the design of the prototype.

The TDM port offers the flexibility of communication among processors needed to
implement the prototyping of the sonar array. Its broadcasting and simple configuration
capabilities help reduce communication overhead.

148

Appendix E. Fault-tolerant Architectures and Algorithms
The realization of a real-time sonar array beamformer imposes particular fault recovery

techniques. These techniques will eliminate the need for a robust network transmission control
protocol with an advanced ARQ (automatic repeat request) mechanism. In a real-time system,
these methods are simply too slow and unneeded. The particular needs of this project relate well
to a Global Data Scope (GDS) type system. GDS characterizes the scope of the sample set for a
particular distributed parallel sonar array (DPSA).

Preliminary research suggests that a GDS system is quite realizable and perhaps practical.
The alternative is a Local Data Scope (LDS) system in which a sample set is particular and local
to each node. The GDS system simply updates a sample set on each node's memory by utilizing
broadcast mechanisms. Therefore, each node has a continually updated local set of each node's
sample set. This is quite feasible in an array of 32 nodes, utilizing approximately 2 Mbps of
network resources if the network supports broadcast sends. The advantages of this type of system
include a very deterministic traffic pattern, easy parallel decomposition, and numerous fault-
tolerance benefits. However, there are always disadvantages. The GDS system certainly will use
much more memory than the LDS approach. This problem becomes apparent when observing
that data is replicated at each node. Secondly, a pre-processing stage such as an FFT is difficult
to implement before replicating data to each node; however, it is feasible. But it still maintains its
greatest value: efficiency through simplicity.

E. 1. Fault-Tolerant Services

Fault tolerance is an obvious requirement for the Distributed Parallel Sonar Array. The first
justification is (since the device is battery powered in distribution) the fact that the system is
guaranteed to fail at some time at an arbitrary node or nodes. Therefore, the probability of failure
is 100 percent. Since the system is also autonomous, it is impossible for human interaction to
reset the array. However, with such an ambitious system, one or a few disabled nodes need not
handicap the entire array. A list of likely causes of system failure might be network failure, node
failure, poorly adapted code, broken communication links, etc. This project discusses and
attempts to solve software fault-tolerant issues. These mechanisms may be thought of as a kernel
providing a buffer between the network (the only means of communication) and the beamform
application. This kernel could provide various services such as higher network protocol layers
(i.e., a transport control), which may selectively provide automatic repeat requests, error control,
etc. However, a few assumptions were made about the system that must be supported in the
hardware. The most important of these requirements is that the nodes must have the ability to
communicate when other nodes have failed. With the constraint of a linear array wired with
point-to-point links, satisfying this assumption is hardly trivial. The basic assumption, then, is
that any node may communicate although nodes in its path may be disabled. This requirement is
satisfied by the optical bypass switch already created in phase one.

The Fault-Tolerant Kernel is a software protocol that may be placed in between the network
protocol layers and the beamform algorithm. The kernel offers services to the application, which
improves the fault tolerance of the system. In particular, five fault-tolerant measures were built
into the kernel to support the software on top of the Global Data Scope (GDS) system. The first
of these measures is the ability of nodes to pad data streams if data was corrupted or lost by the
network. Second, each important transaction, such as a system request, is built with a
handshaking protocol, which ensures delivery. Third, periodic sensing is employed, where
"request ping" messages are sent from the master node to each of the stations. These messages
also allow the master node to allocate jobs to the existing slave pool and reallocate when

149

necessary. Fourth, a mechanism was created to resynchronize the array and the circular buffer
and sample pointers (which are discussed in detail below). Last, each slave node also
periodically checks the status of the master node. If the master fails, each node has the capability
of distributing jobs to each of the other slaves. In other words, any node may become master.

Figure E.l - System Diagram and Fault-Tolerant Services. The Fault-Tolerant Kernel is a buffer between
the Network and higher application process. It provides services such as higher network protocols, as well

as mechanisms particular for a DPS A.

This fault-tolerant research was implemented on a simple time-domain beamform algorithm
which is also called GDS. The GDS beamform algorithm (for clarity, this will be referred to as
GDS-BA) defined a new type of parallel decomposition, which again may be called Global Data
Scope (GDS). The idea of the GDS-BA system is to distribute data to each of the nodes so that
the beamform algorithm, in whatever domain necessary, may be easily realizable with a data
parallel approach. The alternative to this type of system may be called Local Data Scope (LDS).
LDS has the quality that it potentially is much more communication efficient, but as a result is
much harder to realize and not easily restructured for different algorithms. Another advantage to
the GDS approach is that the beamform algorithm may be decomposed further, thus reducing
Amdahl's fraction or the sequential bottleneck. In addition, GDS systems are likely to be much
more fault tolerant since an agenda-parallel approach can decompose the beamform. One such
agenda-parallel approach is steering decomposition where each node is in charge of beamsteering
in one or a number of directions. These steering directions need not be static, however, and
instead may be dynamically assigned throughout the nodes in the system. The results of this
study are not algorithm dependent and may be generalized for conventional delay-and-sum
frequency-domain beamforming or newer correlational techniques such as matched-field
processing.

The sonar array is assumed to be a linearly distributed number of nodes each containing one
or more transducers, a processing element, and a network connection, all tied together with a
point-to-point inter-connection. Through broadcast mechanisms the network is able to provide 2

150

Mbps to each node's vector of data samples taken from 32 distributed nodes. The traffic
calculations for non-broadcast networks and broadcast networks are shown in Equations E.l and
E.2, respectively.

(32nodes)^li!2Ss^«)(641^)(l000H2)« 64Mbps

Equation E.l

(32nodes)^^^^)(64-Mfer)(l000Hz)= 2Mbps

Equation E.2

The nodes fill up a large circular buffer in real time in parallel arrays. Thus, each node has a
large matrix of sampled data as shown below in Figure E.2. A special array of pointers indicates
the next storing location for each node. The figure shows time running down the page and
samples are written asynchronously into each array. Some amount of synchronization is required
to ensure proper beamform results, but this level is adjustable to practically any desired
synchronization. Any beamform algorithm must be properly built to work within the bounds of
the circular buffer. Currently, the fault-tolerant kernel does not inform the algorithm of the array
bounds, but rather, the algorithm uses predetermined constants and operates within this domain.

Node O's
Array f

Real Time Pointers

tadel's NodeN-2's
Array Array [

Node

IT"'
N-1's
ay

Stack ..

—I fl

\

71 f-,

ooo

_

~ Local Matrix"

*

-*■ *

* * *

/
Pointer \ MM 1' 1 M 1 1 1 1 1 1 1 1

Figure E.2 - The Beamform Reduction Process. The beamform reduction operation occurs in two stages.
The first stage reduces a large matrix into an array of summations. The second stage reduces this array

into a sum of squares divided by the array size or power.

The beamform algorithm has the unique characteristic of being naturally fault tolerant. If
data values or even nodes are lost, the algorithm may only be slightly affected, and valid results
may still be gleaned from the system. The system can take advantage of this characteristic. Since
the entire sample set may simply be approximately correct, the system may disregard the
complications of ensuring data transmission. However, to minimize errors, these holes must be

151

patched slightly by padding them with zeroes. If not padded, the system is likely to use values
from previous sample sets and loose synchronization, which may lead to corrupted results. This
idea of dropping bits in real-time systems is by no means novel and solves a much more
complicated problem with the greatest efficiency.

E.2. Data Padding Samples

Padding of the values is a simple task but requires some extra functionality in the network
layers. The network must provide some sort of ordering mechanism, even if that is one bit. Of
course, the more bits, the better the system will remain in synchronization and stay valid. The
example software uses a 4-bit counter to order incoming data values; therefore, up to 15 data
samples may be lost and correctly padded before losing synchronization. The software simply
compares the counter value from the network packet with a local 4-bit accumulator. If they are in
disagreement, then the distance between samples is determined and the proper number of samples
is padded into the buffer. A different accumulator is local to each array of the data matrix;
therefore, there are as many accumulators as there are real-time pointers or nodes. Figure E.3.
shows the portion of code to perform this operation. The code in bold shows the particular
instructions that perform the data padding capability. The sample_number array holds the current
data number for each array's column including its own. The PAD_NUMBER might be an
average or a true interpolation; however, for simplicity it was left as a zero constant.

152

if(clockcounter>(last_sample_time+(1/parameters.sample_frequency)))
{

last_sample_time = clockcounter;
Sample_Pack.sample_value = ad_convert(tempfile,0,&dummy);
Sampla_Pack.aampla_numbar - aampla_numbar [myrank];
Sample_Pack.iteration = write_sample(Sample_Pack.sample_value,

myrank,iteration,sample_matrix,sample_pointers);
for(i =0; i < number_of_nodes; i++)
{

if(i != myrank)
{

if (alive_jiodes[i) == ALIVE)
MPI_Send((void*)&Sample_Pack,sizeof(sample_package),

MPI_BYTE, i , SAMPLE_PAK,MPI_COMM_WORLD) ;
}

}
aampla_numbar[myrank]++;
aampla_numb«r [myrank] - aampla_numbar[myrank] 6 SN_HASK;

}
for(i =0; i < number_of_nodes; i++)
{

if(i != myrank)
{

if(alive_nodes[i] == ALIVE)
{

MPI_Iprobe (i, SAMPLE_PAK, MPI_COMM_WORLD,6flag, tstatus) ;
if(flag)
{

MPI_Recv((void*)&Sample_Pack,sizeof(sample_package),
MPI_BYTE, i,SAMPLE_PAK,MPI_COMM_WORLD,«.status) ;

whila(aampla_ntunb«r[i] 1- Sampla_Pack.aampla_nuab«r)
{

writa_aamg>la (PAD_NUMBER, i, itaration,
aampla_matrix,aampla_pointara);

■anpla_numbar[i] - aampla_numbar[i] k SN_HASK;
)
write_sample(Sample_Pack.sample_value,i,iteration,

sample_matrix,sample_pointers);
aampla_nuinbar [i] ++;
aampla_numbar[i] • aample_numbar[i] & SN_MXSK;

}
}

Figure E.3 - Data Padding. Data padding is a method which will preserve synchronization ofGDS systems
without guaranteeing the delivery of data packets with a transport protocol.

Data padding may be graphically depicted as shown in Figure E.4. In this example, node 3
dropped a single data value, and the receiver pads it with a zero. Since the distance between the
last sample number and the current number may be a number from 0 to SN_MASK, the protocol
will detect multiple dropped packets up to SN_MASK.

153

Padding Missing Data Samples

Dropped Sample
Network-Node Boundary

Node 4 Sample Sample Sample Sample Sample
-^5n«\n3 ~* 2 "* 1

Node 3 Sample Sample L, Sample Sample
-»I , r-»l . rW 3 -» 2

Sample

Sample II Sample L-yWuinKJ Sample
5 I-*] 4 [-*S^npl/'>] 2

Sample
1

Sample Sample Sample Sample Sample
S43",2~*1

Sample Data Streams

Sample 2 Sample 2

Samples

Nodel
Data Array

Node 2
Data Airay

Node 3
Data Array

Node 4
Data Array

I Data Matrix I

Figure E.4 - Padding Data Streams. The fault-tolerant kernel may pad lost data values with a zero or an
average of the surrounding samples. Each node records a data packet number for each array of the

circular matrix.

E.3. Automatic Repeat Requests

The second fault-tolerant measure aforementioned is more complicated. In some scenarios, it
is imperative that a request (or network transaction) is successful. For instance, all slave nodes
must correctly receive one command that resynchronizes the entire array. If one slave node was
unsuccessful at receiving the transmission or responding to it, the resynchronization request must
be broadcast again to all slave nodes. Only when acknowledge of the request from each of the
nodes is returned to the master is the command considered successful. A simple stop-and-wait
protocol was created for each request type. Each request that requires this service provides its
own ARQ buffering mechanism for retransmission; therefore, a stop-and-wait system is not quite
analogous. Figure E.5 shows the request response model for this approach. Beamform request,
resynchronization request, and ping request each use this model to ensure stability.

E.4. Reinitialize Request

The reinitialize request may be called periodically to ensure proper synchronization of the
global matrices. Reinitializing returns many variables, such as ARQ status variables and other
timing variables, to their zero state and of course zeroes out the entire data matrix and sample
pointers. One property of the reinitialize request, which is different from the other requests, is
that if one or more nodes do not acknowledge the request, it must be resent to all of the nodes. If
this measure is not taken and a reinitialize request is sent just to the nodes that did not respond,
the synchronization of these nodes will lag all of the other nodes. So the reinitialize request is
sent until every alive node returns an acknowledge.

154

Reinitialize Request

Master Node

Successful
Transfer

Corrupted
Transfer

Slave Node

Figure E.5 - Reinitialize Request. One of the system messages which takes advantage of the ARQ is the
reinitialize request. In its case, however, if one node fails to respond everyone must be reinitialized again.

E.5. Ping (Check Status) Request

The ping mechanism uses the request-acknowledge paradigm in another manner. In its case,
the acknowledge indicates that the slave node is still operational. The master periodically makes
ping requests to each node and tabulates the results. These results are then forwarded to each of
the nodes so that they have an image of the current status. This table is also used when creating
an agenda for the beamform algorithm. The ping request, if unacknowledged, makes repeated
attempts to contact the slave node. If after a few requests the node is unresponsive, the slave will
be cut off from the system. Each node keeps a record, which is continually updated by the master
node, of which nodes are still alive. When each of the records are updated, the nodes will stop
sending data to that node, the master will stop sending requests to that node, and any message
generated by that node will be refused and sunk by the destined address. These measures will
help to ensure that if the down node suddenly becomes active again, it will not try and send
insane requests to other healthy nodes. Updating the nodes also performs the important function
of zeroing out the data column of the defective node. This will prevent beamform solutions from
using old data without having to do a complete reinitialize.

155

Ping Request

Master Node

Successful
Transfer

Corrupted
Transfer

Slave Node

Figure E.6 - The Ping Request. The ping request checks the status of each node. If after a few attempts a
node fails to respond to any of the ping requests, that node will be cutoff from communication to other

node, and each of the nodes will be updated with an update system request.

E.6. Beamform Request

Beamform requests, like pings, may be selectively acknowledged. This implies that the
beamform solutions do not necessarily have to occur at the same time or on the same set of data.
Although the true solution does require this, if one beamform request operates on data that is one
or two data samples behind, the solution is still approximately correct. In fact, with steering
decomposition, the sample sets may even be orthogonal and still represent an accurate solution.
This situation is not valid only if there is great flux in the incoming signals. The ARQ
mechanism works exactly like the ping-pong mechanism and is coded similarly. Figure E.7
below shows an example beamform request transaction. Note that beamform results are not
acknowledged, but they could be (via a simple extension to the slaves' node programming) if
desired since they have the ARQ mechanism as well. However, it is not necessary that each
beamform request result be successful since the master node may simply infer information from
the results of its neighbors. In addition, in a real-time system, a missed piece of data has little
effect.

156

Beamform Request

Master Node

Successful
Transfer

Corrupted
Transfer

Slave Node

Figure E. 7 - The Beamform Request. The beamform request occurs in two stages. The first stage
immediately sends an acknowledge of the request. This ensures that a new beamform request may be

created immediately if a node did not respond. The second stage is the result of the beamform request and
may take an arbitrarily long period.

E.7. Arbitrate New Master

The last fault-tolerant measure built into the GDS kernel was a mechanism for timing the
master node requests. If the master fails and stops sending requests then each node will start
timing and arbitrate to become master after a specific period. The current arbitration is quite
simple and works as follows. During initialization, the node with the lowest rank becomes the
master. After each master node failure, the node with the lowest rank number becomes the new
master. This process may continue all the way until there are only two nodes left, at which point
any results taken from the array have little fidelity. This arbitration is likely to be much more
complicated because the communication up-link is not likely to be present at every node and may
instead be ported to a specific few. However, if the link is located on a boundary at a few of the
nodes, this arbitration scheme would be sufficient. After the arbitration of master status is
complete, the new master then sends a reinitialization request to each of the other nodes. A
portion of code that shows the arbitration for becoming master is shown as Figure E.8 below.
The bold text shows the actual instructions that provide this arbitration.

157

if(master_timeout > (2*setsize))
{

new_maatar ■ 0;
aliva_nod8«[lait_maatar] - 0;
master_timeout = 0;
for(i ■ 0; i <■ myrank; i++)
<

if(alive_nodaa[naw_maatar]
{

naw_maatar++;

0)

if(new_master == myrank)
{

printf("Master Died - Node[%d] is the new Master\n",myrank);
job_scheduler(setsize,number_of_nodes,myrank,filename,
sample_matrix,sample_pointers,clock_resolution,
parameters.sample_freguency,alive_nodes);

)

Figure E.8- Master Arbitration. If the master node goes down an arbitration scheme must resolve who the
new master node will be. The new master is simply the alive node with the lowest rank.

E.8. Verification of GDS Fault-Tolerant Kernel

A complicated test was created to test the verification of the GDS kernel. This test injected
faults into the system such as a node failure or master node failure. In addition, the reinitialize
request was periodically called to test how well the array could remain in synchronization. Below
is the text output of various phases of the system during these fault-injections. The output is an
abridged version of the data filefault_injection_testl.dat which may be obtained by contacting
the HCS Research Laboratory.

158

Abridged Output of Kernel
Test with Fault-Injection

Clock (0.000104) integrally adjusted to sampletime.
Request Reinitialize
Node[l] acknowledged reinitialize request
Node[2] acknowledged reinitialize request
Node[3] acknowledged reinitialize request
Node[4] acknowledged reinitialize request
Node[5] acknowledged reinitialize request
Node[6] acknowledged reinitialize request
Node[7] acknowledged reinitialize request
Ping All Nodes
Node[l] acknowledged PING
Node[2] acknowledged PING
Node[3] acknowledged PING
Node[4] acknowledged PING
Node[5] acknowledged PING
Node[6] acknowledged PING
Node[7] acknowledged PING
Request Beamform 1

0.0000 0.5878 0.9511 0.9511 0.5878 0.0000 0 5878 0 9511
0.3090 0.3090 0.8090 1.0000 0.8090 0.3090 0 3090 0 8090
0.5878 0.0000 0.5878 0.9511 0.9511 0.5878 0 0000 0 5878
1.0000 0.8090 0.3090 0.3090 0.8090 1.0000 0 8090 0 3090
0.9511 0.9511 0.5878 0.0000 0.5878 0.9511 0 9511 0 5878
0.8090 1.0000 0.8090 0.3090 0.3090 0.8090 1 0000 0 8090
0.5878 0.9511 0.9511 0.5878 0.0000 0.5878 0 9511 0 9511 Matrix Zeroed
0.3090
X

0.8090
X

1.0000
X

0.8090
X

0.3090
X

0.3090
X

0
X

8090 1
X

0000 at startup and
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0000 0 0000 X^when reinitialized
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0000 0 0000 ^^
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0000 0 GOUT
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0000. 0, jmo
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0004 0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0000 0 0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0000 0 0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0000 0 0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0000 0 0000
Node[l] acknowledged beamform request
Node[2] acknowledged beamform request
Node[3] acknowledged beamform request
Node[4] acknowledged beamform request
Node[5] acknowledged beamform reque St
Node[6] acknowledged beamform request
Node[7] acknowledged beamform request

Request Beamform 4

0 0000 0 5878 0 3090 0 .9511 0 5878 0 0000 0 5878 0 9511
0 3090 0 3090 0 5878 1 0000 0 8090 0 3090 0 3090 0 8090
0 5878 0 0000 0 8090 0 9511 0 9511 0 5878 0 0000 0 5878
0 5878 0 0000 0 8090 0 9511 0 9511 0 5878 0 0000 0 5878
0 8090 0 3090 0 9511 0 8090 1 0000 0 8090 0 3090 0 3090
0 9511 0 5878 1 0000 0 5878 0 9511 0 9511 0 5878 0 0000
1 0000 0 8090 0 9511 0 3090 0 8090 1 0000 0 8090 0 3090
0 9511 0 9511 X ^00 0 5878 0 9511 0 9511 0 5878
0 8090 1 0000 0 8090^ ̂) 3Ü9*- ^090 0 8090 1 0000 0 8090
0 5878 0 9511 0 9511 0 5878 0 OOulr -&fi78 0 9511 0 9511
0 9511 0 9511 0 5878 0 0000 0 5878 0 951T" -ftSil 0 5878
0 8090 1 0000 0 8090 0 3090 0 3090 0 8090 1 0000 Node 2

fails after 3rd
beamform request

159

Ping All Nodes
Node[l] acknowledged beamform request
Node[3] acknowledged beamform request
Node[4] acknowledged beamform request
Node[5] acknowledged beamform request
Node[6] acknowledged beamform request
Node[7] acknowledged beamform request

acknowledged PING
acknowledged PING
acknowledged PING
acknowledged PING
acknowledged PING
acknowledged PING

Node[0] checking #Pings
Node[0] checking #Pings
Node[0] checking #Pings
Node[0] checking #Pings
Node[0] checking #Pings

Node[l]
Node[3)
Node[4]
Node[5]
Node[6]
Node[7]
PingPong Failed
PingPong Failed
PingPong Failed
PingPong Failed
PingPong Failed
Node 2 is dead

Master sends
Pings to Node 2

Discovers it dead

Update local node table
Master Died - Node[l] is the new Master
Request Beamform 1

Master Fails -
Nodes arbitrate

for master

X 0.3090 X 1.0000 0.8090 0.3090 0 .3090 0 .8090
0.0000 0.0000 0.0000 0.9511 0.9511 0.5878 0 .0000 0 .5878
0.0000 0.3090 0.0000 0.8090 1.0000 0.8090 0 .3090 0 .3090
0.0000 0.9511 0.0000 0.5878 0.0000 0.5878 0 .9511 0 .9511
0.0000 0.8090 0.0000 0.8090 0.3090 0.3090 0 .8090 1 .0000
0.00^- -0.0000 0.9511 0.5878 0.0000 0 5878 0 .9511
0.0000 X 0.066TT X X
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000"
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0000 0 0000
0.0000 0.0000 0.000Q 0.0000 0.0000 0.0000 0 0000 0 0000
0.0000 0.0000 o.oirtf- -euaopo 0.0000 0.0000 0 0000 0 0000
0.0000 0.0000 0.0000 o.ooBTr "&*aapo 0.0000 0 0000 0 0000
0.0000 0.0000 0.0000 0.0000 O.OOOu* 0 0000 0 0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 „£_ 0000

Request Beamform 5

X 0.9511 X 0.0000 0.5878 0.9511 0 9511 0 5878
0.0000 1.0000 0.0000 0.3090 0.3090 0.8090 1 0000 0 8090
0.0000 0.9511 0.0000 0.5878 0.0000 0.5878 0 9511 0 9511
0.0000 1.0000 0.0000 0.3090 0.3090 0.8090 1 0000 0 8090
0.0000 0.9511 0.0000 0.5878 0.0000 0.5878 0 9511 0 9511
0.0000 0.8090 0.0000 0.8090 0.3090 0.3090 0 8090 1 0000
0.0000 0.5878 0.0000 0.9511 0.5878 0.0000 0 5878 0 9511
0.0000 X 0.0000 X X X X X
0.0000 1.0000 0.0000 0.3090 0.3090 0.8090 1 0000 0 8090
0.0000 0.9511 0.0000 0.5878 0.0000 0.5878 0 9511 0 9511
0.0000 0.8090 0.0000 0.8090 0.3090 0.3090 0 8090 1 0000
0.0000 0.3090 0.0000 1.0000 0.8090 0.3090 0 3090 0 8090
0.0000 0.0000 0.0000 0.9511 0.9511 0.5878 0 0000 0 5878
0.0000 0.3090 0.0000 0.8090 1.0000 0.8090 0 3090 0 3090
0.0000 0.5878 0.0000 0.5878 0.9511 0.9511 0 5878 0 0000
0.0000 0.8090 0.0000 0.3090 0.8090 1.0000 0 8090 0 3090
Node[3] acknowledged beamform request
Node[4] acknowledged beamform request
Node[5] acknowledged beamform request
Node[6] acknowledged beamform request
Node[7] acknowledged beamform request
Request Beamform 6

Node 0 (Old master)
zeroed

Node 2
zeroed

160

Clock (0.000104) integrally adjusted to sampletime..
Update local node table
Master Died - Node[3] is the new Master ^
Request Reinitialize
Node[4] acknowledged reinitialize request
Node[5] acknowledged reinitialize request
Node[6] acknowledged reinitialize request
Node[7] acknowledged reinitialize request
Ping All Nodes
Node[4] acknowledged PING
Node[5] acknowledged PING
Node[6] acknowledged PING
Node[7] acknowledged PING
Request Beamform 1

Master Fails -
Nodes arbitrate

for master
again

X X X 0.9511 0.9511 0.5878 0 .0000 0 .5878
0.0000 0.0000 0.0000 0.8090 1.0000 0.8090 0 .3090 0 .3090
0.0000 0.0000 0.0000 0.5878 0.9511 0.9511 0 .5878 0 .0000
0.0000 0.0000 0.0000 0.8090 0.3090 0.3090 0 .8090 1 .0000
0.0000 0.0000 0.0000 0.9511 0.5878 0.0000 0 .5878 0 .9511
0.0000 0.0000 0.0000 1.0000 0.8090 0.3090 0 .3090 0 .8090
0.0000 0.0000 0.0000 X X X X X
0.0000 0.00M[-n "Oft" 0.0000 0.0000 0.0000 0 .0000 0 .0000
0.0000 0.000(7 0.0000 "u.Oüutr -0000 0 ,0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0000 "Ö"
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0000 0 .0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0000 0 0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0000 0 0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0 0000 0 0000
Node[7] acknowledged beamform request
Node[4] acknowledged beamform request
Node[5] acknowledged beamform request
Node[6] acknowledged beamform request
Request Beamform 2

X X X 0.3090 0.3090 0.8090 1 0000 0 8090
0.0000 0.0000 0.0000 0.5878 0.0000 0.5878 0 9511 0 9511
0.0000 0.0000 0.0000 0.8090 0.3090 0.3090 0 8090 1 0000
0.0000 0.0000 0.0000 0.5878 0.0000 0.5878 0 9511 0 9511
0.0000 0.0000 0.0000 0.8090 0.3090 0.3090 0 8090 1 0000
0.0000 0.0000 0.0000 0.9511 0.5878 0.0000 0 5878 0 9511
0.0000 0.0000 0.0000 1.0000 0.8090 0.3090 0 3090 0 8090
0.0000 0.0000 0.0000 X X X X X
0.0000 0.0000 0.0000 0.5878 0.0000 0.5878 0 9511 0 9511
0.0000 0.0000 0.0000 0.8090 0.3090 0.3090 0 8090 1 0000
0.0000 0.0000 0.0000 0.9511 0.9511 0.5878 0 0000 0 5878
0.0000 0.0000 0.0000 0.8090 1.0000 0.8090 0 3090 0 3090
0.0000 0.0000 0.0000 0.5878 0.9511 0.9511 0 5878 0 0000
0.0000 0.0000 0.0000 0.3090 0.8090 1.0000 0 8090 0 3090
0.0000 0.0000 0.0000 0.0000 0.5878 0.9511 0. 9511 0 5878

Node 1 (Old master)
zeroed

161

Performance tests were taken against a baseline GDS system, which may show a rough
estimation of the performance slowdown due to the extra fault-tolerant features. Note that during
this test, fault-injections were turned off. The results, then, are representative of a healthy array
and not of transient periods. However, all of the kernel recovery services are, of course, still
present, thus adding overhead to the system. The system exhibits high efficiency implying many
services may be provided if their frequency of interruption with the system is sparse. In this
particular test, all of the fault-injection parameters were turned off, but fault-tolerant services
such as frequent ping requests were still performed.

0.8

Mae
.2 "5
£0.4
UJ

0.2

0

98.0% 89.1% 8 4.8 % 95.6%

i i i r (i

4 6
Number of Nodes

8

Figure E.9 - Efficiency Test. The efficiency of the fault-tolerant kernel surprisingly was very high. This
indicates that these services may be provided at low cost to the performance on the network.

E.9. Conclusions

The software for the GDS kernel was built so that any beamform algorithm, conventional or
otherwise, may be simply written into the simulator. GDS is a communication framework that
distributes data to each node so that data is logically a shared file. However, the system may be
optimized for its domain. For instance, if operating in the frequency domain, intuitively we see
that the data should be transformed before broadcasting to each node. This optimization is used
because parallelism of the data is inherent to the system and missing this step makes inefficient
use of the hardware. In general, any preprocessing step such as filtering or transforming should
be implemented before the broadcast distribution by the GDS nodes.

The results of the fault-tolerant kernel suggest that many mechanisms may be used in order to
maintain a stable system at reasonable cost to the entire system's processing capability and to the
communication channel. Tests showed that the five fault-tolerant mechanisms only lowered
system performance by 10%. This factor is reasonable, and the final prototype may be over
designed to compensate for this loss.

162

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave
Blank)

REPORT DATE
3 Feb 98

3. REPORT TYPE AND DATES COVERED
Annual (1 Jan 97 - 31 Dec 97)

4. TITLE AND SUBTITLE

Parallel and Distributed Computing Architectures and Algorithms for Fault-Tolerant Sonar Arrays
(Annual Report #2)

6. AUTHORS
A. George, R. Fogarty, J. Garcia, K. Kim, J. Markwell, M. Miars, and S. Walker

5. FUNDING NUMBERS
N00014-97-1-0229

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
HCS Research Laboratory

Dept. of Electrical and Computer Engineering, University of Florida
PO Box 116200, 320 Larsen Hall
Gainesville, FL 32611-6200

8. PERFORMING ORGANIZATION REPORT
NUMBER

HCS-TR-98-1

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Office of Naval Research
Ballston Centre Tower One
800 N Quincy Street
Arlington, VA 22217-5660

10. SPONSORING / MONITORING AGENCY
REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT

APPROVED FOR PUBLIC RELEASE

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This report summarizes the progress and results of the second of a three-year study whose goal is the use of fault-tolerant distributed and parallel
processing techniques to decrease the cost and improve the performance and reliability of large, disposable sonar arrays. In this second phase, tasks
have concentrated on the design, development, analysis and evaluation of conventional and basic split-aperture beamforming algorithms. A broad
assortment of parallel algorithms and programs for FFT beamformers have been completed, and their performance evaluated via a cluster testbed
and via rapid virtual prototyping capabilities derived from new network architecture models. These models include a wide variety of network protocols
centered around unidirectional, ring, and bidirectional topologies. In addition, new emphasis has begun with split-aperture conventional beamforming
and initial results indicate a significant potential for performance improvement through parallel processing. Finally, the architecture for the
hardware prototype has been developed, and work has begun on its construction and that of its software system.

14. SUBJECT TERMS

distributed computing; parallel computing; computer networks; sonar arrays; beamforming algorithms;
fault-tolerant computing

15. NUMBER OF PAGES

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT
UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE
UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT
UNCLASSIFIED

20. LIMITATION OF
ABSTRACT

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-1
298-102

